• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New statistical analysis reveals thousands of rare mutations linked with cancer

Bioengineer by Bioengineer
April 20, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Original image by Thomas A. Peterson, CC BY

Scientists have identified thousands of previously ignored genetic mutations that, although rare, likely contribute to cancer growth. The findings, which could help pave the way to new treatments, are published in PLOS Computational Biology.

Cancer arises when genetic mutations in a cell cause abnormal growth that leads to a tumor. Some cancer drugs exploit this to attack tumor cells by targeting proteins that are mutated from their usual form because of mutations in the genes that encode them. However, only a fraction of all the mutations that contribute significantly to cancer have been identified.

Thomas Peterson, at the University of Maryland, and colleagues developed a new statistical analysis approach that uses genetic data from cancer patients to find cancer-causing mutations. Unlike previous studies that focused on mutations in individual genes, the new approach addresses similar mutations shared by families of related proteins.

Specifically, the new method focuses on mutations in sub-components of proteins known as protein domains. Even though different genes encode them, different proteins can share common protein domains. The new strategy draws on existing knowledge of protein domain structure and function to pinpoint locations within protein domains where mutations are more likely to be found in tumors.

Using this new approach, the researchers identified thousands of rare tumor mutations that occur in the same domain location as mutations found in other proteins in other tumors– suggesting that they are likely to be involved in cancer.

"Maybe only two patients have a mutation in a particular protein, but when you realize it is in exactly the same position within the domain as mutations in other proteins in cancer patients," says senior author of the study Maricel Kann, "you realize it's important to investigate those two mutations."

The researchers have coined the term "oncodomain" to refer to protein domains that are more likely to contain cancer-causing mutations. Further study of oncodomains could help inform drug development: "Because the domains are the same across so many proteins," Kann says, "it is possible that a single treatment could tackle cancers caused by a broad spectrum of mutated proteins."

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005428

Citation: Peterson TA, Gauran IIM, Park J, Park D, Kann MG (2017) Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples. PLoS Comput Biol 13(4): e1005428. https://doi.org/10.1371/journal.pcbi.1005428

Funding: This work was funded by NSF (award #1446406, PI: MGK), NIH (award #1K22CA143148, PI: MGK and Award #R01LM009722 CoPI: MGK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Maricel G. Kann
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.