• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New standard helps optical trackers follow moving objects precisely

Bioengineer by Bioengineer
November 22, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: NIST

Throwing a perfect strike in virtual bowling doesn't require your gaming system to precisely track the position and orientation of your swinging arm. But if you're operating a robotic forklift around a factory, manipulating a mechanical arm on an assembly line or guiding a remote-controlled laser scalpel inside a patient, the ability to pinpoint exactly where it is in three-dimensional (3-D) space is critical.

To make that measurement more reliable, a public-private team led by the National Institute of Standards and Technology (NIST) has created a new standard test method to evaluate how well an optical tracking system can define an object's position and orientation–known as its "pose"–with six degrees of freedom: up/down, right/left, forward/backward, pitch, yaw and roll.

Optical tracking systems work on a principle similar to the stereoscopic vision of a human. A person's two eyes work together to simultaneously take in their surroundings and tell the brain exactly where all of the people and objects within that space are located. In an optical tracking system, the "eyes" consist of two or more cameras that record the room and are partnered with beam emitters that bounce a signal–infrared, laser or LIDAR (Light Detection and Ranging)–off objects in the area. With both data sources feeding into a computer, the room and its contents can be virtually recreated.

Determining the pose of an object is relatively easy if it doesn't move, and previous performance tests for optical tracking systems relied solely on static measurements. However, for systems such as those used to pilot automated guided vehicle (AGV) forklifts–the robotic beasts of burden found in many factories and warehouses–that isn't good enough. Their "vision" must be 20/20 for both stationary and moving objects to ensure they work efficiently and safely.

To address this need, a recently approved ASTM International standard (ASTM E3064-16) now provides a standard test method for evaluating the performance of optical tracking systems that measure pose in six degrees of freedom for static–and for the first time, dynamic–objects.

NIST engineers helped develop both the tools and procedure used in the new standard. "The tools are two barbell-like artifacts for the optical tracking systems to locate during the test," said NIST electronics engineer Roger Bostelman. "Both artifacts have a 300-millimeter bar at the center, but one has six reflective markers attached to each end while the other has two 3-D shapes called cuboctahedrons [a solid with 8 triangular faces and 6 square faces]." Optical tracking systems can measure the full poses of both targets.

According to Bostelman's colleague, NIST computer scientist Tsai Hong, the test is conducted by having the evaluator walk two defined paths–one up and down the test area and the other from left and right–with each artifact. Moving an artifact along the course orients it for the X-, Y- and Z-axis measurements, while turning it three ways relative to the path provides the pitch, yaw and roll aspects.

"Our test bed at NIST's Gaithersburg, Maryland, headquarters has 12 cameras with infrared emitters stationed around the room, so we can track the artifact throughout the run and determine its pose at multiple points," Hong said. "And since we know that the reflective markers or the irregular shapes on the artifacts are fixed at 300 millimeters apart, we can calculate and compare with extreme precision the measured distance between those poses."

Bostelman said that the new standard can evaluate the ability of an optical tracking system to locate things in 3-D space with unprecedented accuracy. "We found that the margin of error is 0.02 millimeters for assessing static performance and 0.2 millimeters for dynamic performance," he said.

Along with robotics, optical tracking systems are at the heart of a variety of applications including virtual reality in flight/medical/industrial training, the motion capture process in film production and image-guided surgical tools.

"The new standard provides a common set of metrics and a reliable, easily implemented procedure that assesses how well optical trackers work in any situation," Hong said.

The E3064-16 standard test method was developed by the ASTM Subcommittee E57.02 on Test Methods, a group with representatives from various stakeholders, including manufacturers of optical tracking systems, research laboratories and industrial companies.

###

The E3064-16 document detailing construction of the artifacts, setup of the test course, formulas for deriving pose measurement error and the procedure for conducting the evaluation may be found on the ASTM website, http://www.astm.org.

Media Contact

Michael E. Newman
[email protected]
301-975-3025
@usnistgov

http://www.nist.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

August 21, 2025
blank

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

August 21, 2025

TCF1 and LEF1 Sustain B-1a Cell Function

August 21, 2025

SwRI Expands Horizons: New Office Launches in Warner Robins, Georgia, Marking First Location Outside Texas

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

TCF1 and LEF1 Sustain B-1a Cell Function

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.