• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New scientific approach assesses land recovery following oil and gas drilling

Bioengineer by Bioengineer
February 7, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: USGS

A new scientific approach can now provide regional assessments of land recovery following oil and gas drilling activities, according to a new U.S. Geological Survey study published in the journal Science of the Total Environment.

When developing oil and gas well pads, the vegetation and soil are removed to level the areas for drilling and operations. The new assessment approach, called the disturbance automated reference toolset, or DART, is used to examine recovery patterns after well pads are plugged and abandoned to help resource managers make informed decisions for future well pad development.

"These results may assist land managers in deciding what areas might be best utilized for energy development while also minimizing the long-term environmental impacts," said Travis Nauman, a USGS scientist and the lead author of the study.

The recovery of well pads following oil and gas development is an area of growing importance because recent technological advances such as hydraulic fracturing and horizontal drilling have initiated rapid increases in development and production. Previous studies estimate that about 11,583 square miles of land in central North America were cleared for oil and gas related purposes between 2000 and 2012.

USGS scientists examined oil and gas well pad recovery on the Colorado Plateau using a new approach that incorporates satellite imagery, digital soil mapping, predictive ecological modeling and field assessments to evaluate vegetation recovery following well pad abandonment. Scientists used DART to study 1,800 well pads in Utah, Colorado and New Mexico. Satellite imagery was used to compare vegetation cover of the abandoned sites to surrounding undisturbed areas with roughly equivalent climate, soil, topography and management histories.

Findings show that most abandoned oil and gas pads in the study are characterized by more bare ground and less vegetation than surrounding undisturbed areas, even after more than 9 years since abandonment. The majority of pads had 15-45 percent increases in bare ground exposure relative to comparable nearby areas. More exposed bare ground makes areas much more susceptible to soil erosion and dust emission.

Differing recovery across environmental gradients and land stewardship suggests that these can be useful for identifying conditions that may promote or hamper pad recovery. Well pads in grasslands, canyon complexes, blackbrush shrublands and shale badlands are not recovering as well as other ecotypes on the Colorado Plateau. Warmer areas with more summer-dominated precipitation were also associated with reduced well pad recovery. Well pads on federally and privately managed lands had the highest recovery index while state-administered lands had the lowest recovery of the ownership entities evaluated. These findings can help managers identify policies or procedures that may lead to improved well pad recovery.

It is still unclear exactly how long well pad disturbances persist on the landscape once well pads are abandoned, particularly in more arid regions like the Southwest, but it may take many years. Active management intervention, or rehabilitation, of vegetation and soils at abandoned well pads has become more common in recent years, but additional work could increase the success of these efforts. New technological advances like DART can help land managers better understand these disturbances by providing timely assessments to help inform management decisions.

###

Media Contact

Catherine Puckett
[email protected]
352-377-2469
@USGS

http://www.usgs.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Machine Learning Predicts Live Birth Outcomes in IVF

October 7, 2025
Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

October 7, 2025

Natural ‘Battery’ of Soil Bacteria and Minerals Dismantles Antibiotics in Darkness

October 7, 2025

Rice University Unveils Second Cohort of Chevron Energy Graduate Fellows

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    939 shares
    Share 375 Tweet 235
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Predicts Live Birth Outcomes in IVF

Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

Natural ‘Battery’ of Soil Bacteria and Minerals Dismantles Antibiotics in Darkness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.