• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New research provides fresh hope for children suffering from rare muscle diseases

Bioengineer by Bioengineer
October 9, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Taylor & Francis

Results of an international study published today in Autophagy and led by researchers from Monash University, School of Biological Sciences, provides renewed hope for children suffering from a progressive and devastating muscle disease.

Stephen Greenspan and Laura Zah were devastated when they learned their son Alexander had a rare genetic mutation, which causes a deadly neuromuscular disease with no known treatment or cure.

But the results of an international study published today in Autophagy and led by researchers from Monash University, School of Biological Sciences, provides renewed hope for children suffering from the progressive and devastating muscle disease. Known as myofibrillar myopathies, these rare genetic diseases lead to progressive muscle wasting, affecting muscle function and causing weakness.

Using the tiny zebrafish, Associate Professor Robert Bryson-Richardson from the School of Biological Sciences and his team of researchers were able to show that a defect in protein quality control contributes to the symptoms of the diseases.

“We tested 75 drugs that promote the removal of damaged proteins in our zebrafish model and identified nine that were effective” explained first author Dr Avnika Ruparelia, who completed her student and post-doctoral training in the team working on the disease. “Importantly two of these are already approved for human use in other conditions.”

“We found that one of the drugs, metformin, which is normally used to treat diabetes, removed the accumulating damaged protein in the fish, prevented muscle disintegration and restored their swimming ability,” said Associate Professor Bryson-Richardson, who led the study.

The most severe form of the myofibrillar myopathy, caused by a mutation in the gene BAG3, starts to affect children between 6 and 8 years of age. The disease is usually fatal before the age of 25 due to respiratory or cardiac failure.

In the case of Alexander (who was born in 2003) clinicians were able to draw on the study’s information to prescribe metformin – which is so far proving positive.

“Initially, we were devastated by our son’s diagnosis. Alexander has a rare mutation that causes a deadly neuromuscular disease. No treatment or cure was known. In desperation we formed the charitable organization, Alexander’s Way, to promote and sponsor research into this disease. Upon learning of our awful problem, A/Prof Bryson-Richardson was compassionate, and found a way to share with us his pre-publication results about the disease and metformin. The research conducted by Robert Bryson-Richardson and Avnika Ruparelia has given us hope, and we thank them deeply for their work and compassion,” said Alexander’s father, Stephen.

“This is a wonderful outcome, as initially we thought that because of the rarity of the mutation, it was unlikely that there would ever be a treatment or therapeutic intervention available,” said Alexander’s mother, Laura Zah. “Compared to previous case studies, the progression of our son’s disease has been slower, likely due to metformin. Another boy, Marco, who is affected by this disease also takes metformin, and is presently judged by his mother to be stable. Metformin may have given us more time with our boys and more time to work for a cure.”

Associate Professor Bryson-Richardson said the repurposing of existing drugs provided a very rapid route to clinical use, as there was already existing safety data for the drug. This is especially important for these rare diseases as the patient numbers are low, meaning it might not be possible to do clinical trials with novel drugs.

“We have identified metformin as a strong candidate to treat BAG3 myofibrillar myopathy, and also myofibrillar myopathy due to mutations in other genes (we showed similar defects in protein quality control in three other forms) and in cardiomyopathy due to mutations in BAG3,” he said.

“Given that metformin is taken by millions of people for diabetes and known to be very safe this makes clinical translation highly feasible, and in fact many patients are now taking it.”

Stephen and Laura Zah are the founders of the charitable organisation Alexander’s Way Research Fund which they established to promote and sponsor research into myofibrillar myopathies.

“The research conducted by Monash scientists has given us hope, and we thank them deeply for their compassion – they have given us time,” said Laura Zah.

###

Media Contact
Abbie Chilton
[email protected]

Related Journal Article

http://dx.doi.org/10.1080/15548627.2020.1833500

Tags: BiologyCell BiologyMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

October 7, 2025
Leafcutter Ants Have Blind Spots — Just Like Truck Drivers

Leafcutter Ants Have Blind Spots — Just Like Truck Drivers

October 7, 2025

Genetic Similarity Among Snow Leopards Raises Concerns for Their Future

October 7, 2025

Wildlife Tracking Animations Reveal Insights into Animal Movement Patterns

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    889 shares
    Share 355 Tweet 222
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leading Scientific Breakthroughs Honored at ACC Middle East Conference

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

Reelin: A Promising Protein for Gut Repair and Depression Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.