• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New research linking cancer-inhibiting proteins to cell antennae

Bioengineer by Bioengineer
December 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CANCER RESEARCH Danish researchers have just presented a previously unknown mechanism that inhibits the ability of cells to develop into cancer cells. Their findings have important implications for the understanding of how cancer starts, and how to improve the treatment of illness in the future. The discovery is published today in the internationally recognized Journal of Cell Biology.

Under the leadership of Professor Søren Tvorup Christensen and Associate Professor Lotte Bang Pedersen, researchers at the University of Copenhagen's Department of Biology have taken an important step forward in understanding the very complex mechanisms by which the cells in our body are able to maintain their normal function, and how defects in these mechanisms could trigger cancer cell formation.

The researchers began by referencing a previous discovery of their own: certain types of signaling molecules are detected by specific receptors (PDGFRα) in what are known as primary cilia. These cilia are present as single units on nearly all cell types in the human body and they function as cellular antennae that detect and transmit extracellular cues to control embryonic development and maintain tissue and organ function in adults. The research group has now demonstrated that the very same antennae also play a crucial role in the balancing of the output of PDGFRα signaling so that the signaling doesn't get out of control. Unconstrained, excessive signaling from these receptors increases the risk – of brain tumor and gastrointestinal cancer development.

"Our results demonstrate that, under normal conditions, primary cilia serve to inhibit processes that can lead to cancer. We have shown that specific cancer-inhibiting proteins of the Cbl-family mediate the targeting of PDGFRα to the cilia, and once located in these antennae, the Cbl proteins prevent excessive receptor activation. Further, we have demonstrated that stabilization and functionality of the Cbl proteins are regulated by an entirely new mechanism, which also is associated with the cilia. Should this mechanism be disturbed, the Cbl proteins will undergo self-destruction, which in turn will lead to mislocalization of the receptors to the general cell surface from where the receptors are wildly over-activated", according to Professor Christensen.

The result is dramatic because cell antennae will now play an entirely new role in both our understanding of tumor progression and in the development of improved diagnostic and treatment methods for patients affected by certain types of cancer. According to the research group, it is likely that other illnesses are also linked to Cbl-protein protection errors.

– "Defects in Cbl proteins are also associated with leukemia and autoimmune diseases. Therefore, our hope is that this discovery will contribute to a better understanding of the mechanisms that lead to these other very complicated illnesses," concludes Søren Tvorup Christensen.

###

Media Contact

Søren Tvorup Christensen
[email protected]
45-51-32-29-97

http://www.science.ku.dk/english/

http://www1.bio.ku.dk/presserum/pressemeddelelser/new-research-linking-cancer-inhibiting-proteins-to-cell-antennae/

Related Journal Article

http://dx.doi.org/10.1083/jcb.201611050

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

X-Linked Gene Dysregulation in Lupus Immune Cells

October 14, 2025

Mapping mRNA Life Cycle in Intact Cells

October 14, 2025

Advancements in Alzheimer’s Amyloid-Lowering Immunotherapies

October 14, 2025

Reevaluating Misconceptions: Heart Attacks, Strokes, Stenosis

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1236 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

X-Linked Gene Dysregulation in Lupus Immune Cells

Mapping mRNA Life Cycle in Intact Cells

Advancements in Alzheimer’s Amyloid-Lowering Immunotherapies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.