• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New research explores durability of 2D hybrid materials

Bioengineer by Bioengineer
July 25, 2023
in Chemistry
Reading Time: 3 mins read
0
Dr. Qing Tu
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers investigated the fatigue behavior of 2D hybrid materials, opening doors to their widespread use in real-world applications.

Dr. Qing Tu

Credit: Texas A&M Engineering

Researchers investigated the fatigue behavior of 2D hybrid materials, opening doors to their widespread use in real-world applications.

New research has unveiled the fatigue resistance of 2D hybrid materials. These materials have long-held promise across semiconductor fields. However, their durability under cyclic loading conditions remained a mystery — until now.

Led by Dr. Qing Tu, professor in the Department of Materials Science and Engineering at Texas A&M University, this is the first study of fatigue behavior on the semiconductor material called 2D hybrid organic-inorganic perovskites (HOIPs) in practical applications.

Researchers recently published their findings in Advanced Sciences.

This new generation of semiconductors holds great potential in nearly the whole spectra of semiconductor applications, including photovoltaics, light-emitting diodes and photosensors, among others. The application of repeated or fluctuating stresses below the material’s strength, known as fatigue loading, often leads to failure in 2D hybrid materials. However, the fatigue properties of these materials have remained elusive despite their widespread use in various applications.

The research group demonstrated how fatigue loading conditions, wearing different components, would affect the lifetime and failure behavior of the new materials. Their results provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic-inorganic materials for long-term mechanical durability.

“We are focusing on a new generation of low-cost, high-performance semiconductor material with hybrid bonding features. That means within the crystal structure, you have a mixture of organic and inorganic components at molecular level,” Tu said. “The unique bonding nature gives rise to unique properties in these materials, including optoelectronic and mechanical properties.”

Researchers discovered that 2D HOIPs can survive over one billion cycles, much longer than engineering practical application needs (typically on the order of 105 to 106 cycles), which outperforms most polymers under similar loading conditions and suggests that 2D HOIPs are fatigue robust. Tu said further examining the failure morphology of the materials reveals both brittle (similar to other 3D oxide perovskites owing to the ionic bonding in the crystals) and ductile (similar to organic materials like polymer) behaviors depending on the loading conditions.

The recurrent component of the loading conditions can significantly drive the creation and accumulation of defects in these materials, which ultimately leads to mechanical failure. The unexpected plastic deformation, suggested by the ductile behavior, is likely to impede the mechanical failure and be the cause of the long fatigue lifetime. This special failure behavior under cyclic stress is probably due to the hybrid organic-inorganic bonding nature, unlike most conventional materials, which typically exhibit pure inorganic or pure organic bonding.

The team also investigated how each component of the stress and the materials’ thickness affect the fatigue behavior of these materials.

“My group has been continuing working on understanding how the chemistry and environmental stressors, such as temperature, humidity and light illumination, affect the mechanical property for this new family of semiconductor material,” Tu said.

This project was also led by Texas A&M doctoral student Doyun Kim, a student in Tu’s research group. Other collaborators include Dr. Eugenia Vasileiadou and Dr. Mercouri Kanatzidis from Northwestern University; Dr. Ioannis Spanopoulos from the University of South Florida; and Dr. Jinhui Yan and Dr. Xugang Wang from the University of Illinois Urbana-Champaign.

The work at Texas A&M is partially supported by the Haythornthwaite Research Initiation Award that Tu received in 2021 from the American Society of Mechanical Engineers – Applied Mechanics Division and by a recent grant from the National Science Foundation.

By Andrew Tineo, Texas A&M Engineering



Journal

Advanced Science

DOI

10.1002/advs.202303133

Article Title

Unveiling the Fatigue Behavior of 2D Hybrid Organic–Inorganic Perovskites: Insights for Long-Term Durability

Article Publication Date

6-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.