• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New research deepens understanding of Earth’s interaction with the solar wind

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Elle Starkman / PPPL Office of Communications

As the Earth orbits the sun, it plows through a stream of fast-moving particles that can interfere with satellites and global positioning systems. Now, a team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters this solar wind.

The team used computer simulations to model the movement of a jet of plasma, the charged state of matter composed of electrons and atomic nuclei that makes up all the stars in the sky, including our sun. Many cosmic events can produce plasma jets, from relatively small star burps to gigantic stellar explosions known as supernovae. When fast-moving plasma jets pass through the slower plasma that exists in the void of space, it creates what is known as a collision-less shock wave.

These shocks also occur as Earth moves through the solar wind and can influence how the wind swirls into and around Earth’s magnetosphere, the protective magnetic shield that extends into space. Understanding plasma shock waves could help scientists to forecast the space weather that develops when the solar wind swirls into the magnetosphere and enable the researchers to protect satellites that allow people to communicate across the globe.

The simulations revealed several telltale signs indicating when a shock is forming, including the shock’s features, the three stages of the shock’s formation, and phenomena that could be mistaken for a shock. “By being able to distinguish a shock from other phenomena, scientists can feel confident that what they are seeing in an experiment is what they want to study in space,” said Derek Schaeffer, an associate research scholar in the Princeton University Department of Astrophysics who led the PPPL research team. The findings were reported in a paper published in Physics of Plasmas that followed up on previous research reported here and here.

The plasma shocks that occur in space, like those created by Earth traveling against the solar wind, resemble the shock waves created in Earth’s atmosphere by supersonic jet aircraft. In both occurrences, fast-moving material encounters slow or stationary material and must swiftly change its speed, creating an area of swirls and eddies and turbulence.

But in space, the interactions between fast and slow plasma particles occur without the particles touching one another. “Something else must be driving this shock formation, like the plasma particles electrically attracting or repelling each other,” Schaeffer said. “In any case, the mechanism is not fully understood.”

To increase their understanding, physicists conduct plasma experiments in laboratories to monitor conditions closely and measure them precisely. In contrast, measurements taken by spacecraft cannot be easily repeated and sample only a small region of plasma. Computer simulations then help the physicists interpret their laboratory data.

Today, most laboratory plasma shocks are formed using a mechanism known as a plasma piston. To create the piston, scientists shine a laser on a small target. The laser causes small amounts of the target’s surface to heat up, become a plasma, and move outward through a surrounding, slower-moving plasma.

Schaeffer and colleagues produced their simulation by modeling this process. “Think of a boulder in the middle of fast-moving stream,” Schaeffer said. “The water will come right up to the front of the boulder, but not quite reach it. The transition area between quick motion and zero [standing] motion is the shock.”

The simulated results will help physicists distinguish an astrophysical plasma shock wave from other conditions that arise in laboratory experiments. “During laser plasma experiments, you might observe lots of heating and compression and think they are signs of a shock,” Schaeffer said. “But we don’t know enough about the beginning stages of a shock to know from theory alone. For these kinds of laser experiments, we have to figure out how to tell the difference between a shock and just the expansion of the laser-driven plasma.”

In the future, the researchers aim to make the simulations more realistic by adding more detail and making the plasma density and temperature less uniform. They would also like to run experiments to determine whether the phenomena predicted by the simulations can in fact occur in a physical apparatus. “We’d like to put the ideas we talk about in the paper to the test,” says Schaeffer.

###

Support for this research came from the DOE Office of Science and the National Atmospheric and Space Administration. Simulations were performed on the Titan supercomputer at the Oak Ridge Leadership Computing Facility, a user facility at the DOE’s Oak Ridge National Laboratory.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science

Media Contact
Raphael Rosen
[email protected]

Original Source

https://www.pppl.gov/news/2020/06/new-research-deepens-understanding-earth%E2%80%99s-interaction-solar-wind

Related Journal Article

http://dx.doi.org/10.1063/1.5123229

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1145 shares
    Share 457 Tweet 286
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cardiovascular Issues Heighten Oxidative Stress in Migraines

Mutation Hotspots Reveal Spermatogonia Clonal Growth

Overcoming Challenges in Long-Term Care for Young Cancer Survivors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.