• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New report links early life antibiotic use to inflammatory gut diseases in adulthood

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new research report in the Journal of Leukocyte Biology involving mice shows that antibiotic use very early in life that alters the normal development/growth of gut bacteria, may contribute to the development of inflammatory bowel disease, and potentially other inflammatory diseases like asthma and multiple sclerosis. This study adds more evidence to suggest that altering gut flora may be a viable treatment strategy for some inflammatory diseases.

"Our study demonstrates that gut bacteria in early life do affect disease development in adulthood, but this response can be changed," said Colby Zaph, Head, Laboratory of Mucosal Immunity and Inflammation, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences at Monash University, Australia. "This has important ramifications for the use of pre- and probiotics, the administration of antibiotics to neonates, and our understanding of how gut bacteria play a critical role in influencing the development of inflammatory diseases such as IBD."

In this study, Zaph and colleagues used two groups of mice. The first group included pregnant females treated with broad spectrum antibiotics during pregnancy and pups treated with broad spectrum antibiotics for the first 3 weeks of life. The second group was a control group that consisted of untreated pregnant mothers and pups. The pups in the treated group were weaned at 3 weeks of age and antibiotic treatment was stopped at the same time. These pups had reduced levels of gut bacteria and were allowed to age normally. At 8 weeks of age, immune cells (CD4 T cells) from both the treated and untreated pups were examined for their ability to induce irritable bowel disease in other mice. The immune cells from antibiotic-treated mice induced a more rapid and more severe disease than those from the untreated mice.

"Our intestinal commensal bacteria are now understood to have a major role in shaping immune health and disease, but the details for this process remain poorly understood," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "These new studies provide an important clue as to how the early signals from our gut bacteria shape key immune cells and how these neonatal events can shape disease potential later in life."

###

The Journal of Leukocyte Biology publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Sebastian Scheer, Tiago S. Medina, Alex Murison, Matthew D. Taves, Frann Antignano, Alistair Chenery, Kiran K. Soma, Georgia Perona-Wright, Mathieu Lupien, Cheryl H. Arrowsmith, Daniel D. De Carvalho, and Colby Zaph. Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation

J. Leukoc. Biol. April 2017 101:893-900; doi:10.1189/jlb.3MA0716-334RR ; http://www.jleukbio.org/content/101/4/893.abstract

Media Contact

Cody Mooneyhan
[email protected]
301-634-7104
@fasebopa

http://www.faseb.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Blood Test Advances Personalized Immunotherapy for Muscle-Invasive Bladder Cancer After Surgery

October 20, 2025

Unraveling Apolipoprotein A-IV in Cardiac Amyloidosis

October 20, 2025

Karel Svoboda and Jay Shendure Elected to National Academy of Medicine

October 20, 2025

Targeting Folate Receptor Beta in Pediatric Tumors Could Enhance Fluorescence-Guided Cancer Surgery

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1267 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    300 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    128 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Test Advances Personalized Immunotherapy for Muscle-Invasive Bladder Cancer After Surgery

Unraveling Apolipoprotein A-IV in Cardiac Amyloidosis

Karel Svoboda and Jay Shendure Elected to National Academy of Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.