• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New quantum research gives insights into how quantum light can be mastered

Bioengineer by Bioengineer
July 21, 2021
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The breakthrough could have wide-reaching implications in quantum information, cryptography, and energy harvesting, according to a new study

IMAGE

Credit: Los Alamos National Laboratory

Los Alamos, N.M., July 21, 2021–A team of scientists at Los Alamos National Laboratory propose that modulated quantum metasurfaces can control all properties of photonic qubits, a breakthrough that could impact the fields of quantum information, communications, sensing and imaging, as well as energy and momentum harvesting. The results of their study were released yesterday in the journal Physical Review Letters, published by the American Physical Society.

“People have studied classical metasurfaces for a long time,” says Diego Dalvit, who works in the Condensed Matter and Complex Systems group at the Laboratory’s Theoretical Division. “But we came up with this new idea, which was to modulate in time and space the optical properties of a quantum metasurface that allow us to manipulate, on-demand, all degrees of freedom of a single photon, which is the most elementary unit of light.”

Metasurfaces are ultrathin structures that can manipulate light in ways not usually seen in nature. In this case, the team developed a metasurface that looked like an array of rotated crosses, which they can then manipulate with lasers or electrical pulses. They then proposed to shoot a single photon through the metasurface, where the photon splits into a superposition of many colors, paths, and spinning states that are all intertwined, generating so-called quantum entanglement–meaning the single photon is capable of inheriting all these different properties at once.

“When the metasurface is modulated with laser or electrical pulses, one can control the frequency of the refracted single photon, alter its angle of trajectory, the direction of its electric field, as well as its twist,” says Abul Azad from the Center for Integrated Nanotechnologies at the Laboratory’s Materials Physics and Applications Division.

By manipulating these properties, this technology could be used to encode information in photons traveling within a quantum network, everything from banks, quantum computers, and between Earth and satellites. Encoding photons is particularly desirable in the field of cryptography because “eavesdroppers” are unable to view a photon without changing its fundamental physics, which if done would then alert the sender and receiver that the information has been compromised.

The researchers are also working on how to pull photons from a vacuum by modulating the quantum metasurface.

“The quantum vacuum is not empty but full of fleeting virtual photons. With the modulated quantum metasurface one is able to efficiently extract and convert virtual photons into real photon pairs,” says Wilton Kort-Kamp, who works in the Theoretical Division at the Lab’s Condensed Matter and Complex Systems group.

Harnessing photons that exist in the vacuum and shooting them in one direction should create propulsion in the opposite direction. Similarly, stirring the vacuum should create rotational motion from the twisted photons. Structured quantum light could then one day be used to generate mechanical thrust, using only tiny amounts of energy to drive the metasurface.

###

The paper: Wilton J.?M. Kort-Kamp, Abul K. Azad, and Diego A.?R. Dalvit. Space-Time Quantum Metasurfaces. Phys. Rev. Lett. 127, 043603. Published 20 July 2021.

DOI: https://doi.org/10.1103/PhysRevLett.127.043603

Funding: Defense Advanced Research Projects Agency (DARPA) and Los Alamos National Laboratory Directed Research and Development (LDRD)

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LA-UR-21-27013

Media Contact
Charles Poling
[email protected]

Original Source

https://discover.lanl.gov/news/releases/0721-new-quantum-research

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.127.043603

Tags: Computer ScienceResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.