• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New possible target for cancer treatment

Bioengineer by Bioengineer
June 6, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at Karolinska Institutet in Sweden report that cancer cells and normal cells use different 'gene switches' in order to regulate the expression of genes that control growth. In mice, the removal of a large regulatory region linked to different types of cancer caused a dramatic resistance to tumour formation, but did not affect normal cell growth. The findings, published in the scientific journal eLife, highlight the possibility of developing highly specific cancer drugs with fewer side effects.

Humans have close to 20,000 genes to carry out all the functions in a cell. The genes make up only 2 per cent of a cell's total DNA. What makes us different from one another is mainly the variation in the remaining 98 per cent of our DNA. The variation is believed to alter the activity of regulatory regions or 'gene switches' (enhancer elements), which control the activity levels of genes in a cell. It is this variation that is mainly responsible for making individuals more or less susceptible to the development of diseases such as cancer.

In the current study, using mice, scientists have analysed a large gene switch region that is linked to the risks of developing many different types of cancer, including prostate, breast, colon, bladder and thyroid cancers as well as chronic lymphocytic leukaemia and myeloma. The variation in this region accounts for far more cancer-related deaths than inherited mutations in well-known cancer-causing genes. It is currently unclear why cancer cells use these particular switches, and whether they have any function in normal cells.

The scientists turned the gene switches off by removing this region from the mouse genome, and found that its loss has no effect on normal mouse development and growth. Although removing the gene switch region brought down the levels of the nearby cancer gene Myc, the mice remained normal and healthy. However, the mice were strongly resistant to the formation of breast tumours and tumours in the intestine.

According to the scientists, these results show that normal cells can function and divide without the genetic elements that are needed for the growth of cancer cells. The study therefore highlights the possibility of developing highly specific cancer drugs.

"Since we find that the growth of normal and cancer cells is driven by different gene switches, we can in principle aim at switching off the system for growth only in the cancer cells without any harmful effect on the growth of normal cells. This can lead to the development of highly specific approaches for cancer therapy with much lower toxic side effects", says Professor Jussi Taipale at Karolinska Institutet's Department of Medical Biochemistry and Biophysics who led the study.

###

The work was supported by the Center for Innovative Medicine at Karolinska Institutet, the Knut and Alice Wallenberg Foundation and the EU FP7 Health project SYSCOL.

Publication: "Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth", Kashyap Dave, Inderpreet Sur, Jian Yan, Jilin Zhang, Eevi Kaasinen, Fan Zhong, Leander Blaas, Xiaoze Li, Shabnam Kharazi, Charlotte Gustafsson, Ayla De Paepe, Robert MÃ¥nsson and Jussi Taipale, eLife online 6 June 2017.

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

http://dx.doi.org/10.7554/eLife.23382

Related Journal Article

http://dx.doi.org/10.7554/eLife.23382

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Phantom Limb Movements via Intraneural Signals

February 8, 2026

Attitudes Toward Aging Impact Early Nursing Home Quality

February 8, 2026

Transforming Healthcare: Just Culture and Restorative Practices

February 8, 2026

Guiding Patients Through Obesity Diagnosis: A Primer

February 8, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Phantom Limb Movements via Intraneural Signals

Attitudes Toward Aging Impact Early Nursing Home Quality

Transforming Healthcare: Just Culture and Restorative Practices

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.