• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New phase of modeling the viscous coupling effects of multiphase fluid flow

Bioengineer by Bioengineer
November 17, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers led by Kyushu University find an improved way to explore key phenomena associated with multiphase fluid flow in porous materials

IMAGE

Credit: I2CNER, Kyushu University

Fukuoka, Japan – Many applications, including carbon dioxide storage and oil recovery, involve the simultaneous flow of two or more phases of matter (solid, liquid, gas, etc.) through porous materials. Pore-scale modeling of such multiphase flow has struggled to capture important phenomena referred to as viscous coupling effects. But now, a research team has developed a method that overcomes this limitation with potential applications to improve fuel technologies and carbon capture systems.

In a study published this month in Advances in Water Resources, researchers led by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) at Kyushu University present a way to incorporate viscous coupling effects into pore-scale modeling of multiphase flow.

A common technique for studying such multiphase flow is pore network modeling (PNM), whereby simplified transport equations are solved for idealized pore geometries. PNM can be used to quickly estimate transport properties, but it neglects viscous coupling effects. An alternative approach is the lattice Boltzmann method (LBM), whereby equations governing fluid flow are solved for realistic pore geometries. Although the LBM can capture viscous coupling effects, it is extremely computationally inefficient.

The team behind this latest research had the idea to combine these two techniques. “We devised an improved model for PNM that uses data collected from LBM simulations,” explains co-author of the study Takeshi Tsuji. “In the simulations, we examined multiphase flow at the pore scale for a wide range of geometric parameters and viscosity ratios.”

The researchers found that for some configurations, viscous coupling effects significantly influence multiphase flow in the pore throat. They used the simulation results to derive a modification factor, expressed as a function of viscosity ratios, that can be easily incorporated into PNM to account for viscous coupling effects. The team also developed a machine learning-based method to estimate the permeability associated with multiphase flow.

“We trained an artificial neural network using a database built from the results of simulations. These simulations considered different combinations of geometric parameters, viscosity ratios, and so on,” says lead author Fei Jiang. “We found that the trained neural network can predict the multiphase permeability with extremely high accuracy.”

This new data-driven approach not only improves PNM by including detailed pore-scale information, but it maintains good computational efficiency. Given that multiphase flow through porous materials is central to many natural and industrial processes, studies such as this one could have far-reaching implications.

###

The article, “Investigation of viscous coupling effects in three-phase flow by lattice Boltzmann direct simulation and machine learning technique,” was published in Advances in Water Resources at DOI: 10.1016/j.advwatres.2020.103797

Media Contact
Tomoya Koga
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.advwatres.2020.103797

Tags: Algorithms/ModelsEnergy SourcesHydrology/Water ResourcesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Phosphorylated Tau Neutralizes Herpes Virus in Neurons

December 17, 2025

Phase 1 Trial: ER Degradation in Advanced Breast Cancer

December 17, 2025

Surviving ARFID: Parents’ Love and Resilience

December 17, 2025

Chlorine-Doped Graphene Boosts Lithium Storage in SnO2

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phosphorylated Tau Neutralizes Herpes Virus in Neurons

Phase 1 Trial: ER Degradation in Advanced Breast Cancer

Surviving ARFID: Parents’ Love and Resilience

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.