• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New mutations related to hereditary neuroendocrine tumours

Bioengineer by Bioengineer
July 20, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pheochromocytomas and paragangliomas are rare neuroendocrine tumours with a strong hereditary component. Half the genes whose alterations confer hereditary susceptibility to develop this condition code for enzymes involved in the Krebs cycle, a metabolic route involved in cellular respiration. A study by the Hereditary Endocrine Cancer Group of the Spanish National Cancer Research Centre (CNIO) published in the journal Clinical Cancer Research identifies new genes associated with this cycle that are involved in the development of these tumours.

Approximately 40% of patients diagnosed with pheochromocytomas or paragangliomas -considered to be the same condition but affecting different parts of the body- harbour a germline alteration in susceptibility genes related to these diseases. This feature earns them the dubious honour of being the tumours with the strongest hereditary component known to date.

Over the past few years the Hereditary Endocrine Cancer Group has focused its efforts on discovering new genes with a hereditary susceptibility to developing this condition employing the very latest sequencing technologies to do so. In addition to the discovery, in 2011, of germline mutations in MAX in patients with hereditary pheochromocytoma, in 2015 a new gene implicated in the Krebs cycle (MDH2) was identified as being responsible for a hereditary susceptibility to developing pheochromocytomas and paragangliomas. The mutations in MDH2, as well as in other genes implicated in the Krebs cycle (such as FH and the SDH genes) cause an accumulation of oncometabolites that inhibit the activity of various enzymes implicated in DNA demethylation, which leads to hypermethylation of certain regions of the DNA -CpG islands- and, ultimately, alterations in gene expression.

In the study published in the current issue of Clinical Cancer Research, the researchers have selected tumour samples that showed this characteristic pattern of hypermethylation but, however, did not have any of the known mutations. Thanks to massive sequencing of all of the genes implicated in the Krebs cycle and to the study of the cycle's intermediaries and of the methylation profile of the tumours, the authors have identified several susceptibility genes associated with a risk of developing this pathology.

In the study the authors show that the presence of a germline mutation in the GOT2 gene found in a patient with 9 tumours and metastasis gives rise to increased activity of the encoder enzyme. Furthermore, the authors describe extraordinarily rare mutations in two patients: one epimutation in the SDHC gene and another in the IDH1 -the third to be identified in this gene. Finally, by way of an extension study focused on more than 60 patients with these neuroendocrine tumours, a new susceptibility gene, IDH3B, associated with the development of paragangliomas was identified.

"The identification of mutations in the Krebs cycle genes is especially important given that the patients harbouring them have a greater likelihood of developing metastasis," explains Alberto Cascón, from the Hereditary Genetic Cancer Group and leader of the study. "The Krebs cycle could be the Achilles heel of these tumours and, therefore, a potential target for future therapies", adds Mercedes Robledo, head of the aforementioned group and member of the team that carried out the research.

###

Media Contact

Cristina de Martos
[email protected]
34-917-328-000
@CNIO_Cancer

Inicio

https://www.cnio.es/ing/publicaciones/new-mutations-related-to-hereditary-neuroendocrine-tumours

Related Journal Article

http://dx.doi.org/10.1158/1078-0432.CCR-16-2250

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Nuclei Isolation Unveils Litopenaeus vannamei Cell Atlas

December 28, 2025
blank

Unlocking Rice Quality: GWAS Sheds Light on Traits

December 28, 2025

Chloroplast Genome of Ecklonia maxima: A Comparative Study

December 27, 2025

Tissue-Specific Gene Expression Variance in Mice

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diffusion Models Revolutionize Underwater Object Detection

Probiotics’ Impact on Smoking-Related Mental Health and Metabolism

Microbiota-Bile Acid Axis Drives Bladder Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.