• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New mutations in iPS cells are mainly concentrated in non-transcriptional regions

Bioengineer by Bioengineer
October 10, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Induced pluripotent stem cells–stem cell-like cells that have been reprogrammed from normal body cells–are a promising avenue of regenerative medicine, and are currently being tested in several clinical studies. However, there are concerns that the mutations that arise in these cells during their generation could potentially cause problems in transplant patients, in particular malignancies. Consequently, researchers are keen to understand the nature of the mutations that arise in these cells.

Now, in research published in Cell Reports, a team from the RIKEN Preventive Medicine and Diagnosis Innovation Program and other institutes has some potentially comforting news. By performing genomic analysis on both mouse and human iPS cells, they found that unlike disease-causing single nucleotide polymorphisms, the mutations found in iPS cells tend to be concentrated into non-transcribed areas of the genome between genes. They also showed that the new mutations that arise in iPS cells are likely caused by oxidative stress, and that this seems to explain why they are concentrated in certain regions.

The specific areas where the new mutations tend to be found–called "lamina-associated domains"–are located on the outer edge of the cell's nucleus, in the membrane that separates the nucleus from the cytoplasm. These areas are characterized by condensed chromatin, and are sensitive to the oxidative damage released from mitochondria. It is known that mutations tend to occur differently in different parts of the genome, depending on a number of factors including the source of the damage, the accessibility of DNA repair mechanisms and the "chromatin status," which refers to how tightly the DNA is wrapped.

According to Yasuhiro Murakawa of the RIKEN Preventive Medicine and Diagnosis Innovation Program and the RIKEN Center for Life Science Technologies (CLST), who led the group, "In this study we found that though there are many mutations that arise during reprogramming, many of them are in transcriptionally repressed lamina-associated domains, and it is tempting to speculate that this means that they will not lead to adverse effects." The researchers also noted that most of the non-synonymous–meaning that the mutation leads to an actual change in a protein–mutations were not those found in a catalog of cancer-related mutations, so were essentially new mutations that still need to be investigated.

Murakawa says, "This study has given us insights into the broad mutational landscape of iPS cells, and it will give us a framework for looking at variations in iPS genomes. This will help us in the quest to develop new therapies."

###

This work was done in collaboration with CLST, the National Institutes for Quantum and Radiological Science and Technology, and Osaka University.

Media Contact

Jens Wilkinson
[email protected]
81-484-621-225
@riken_en

http://www.riken.jp/en/

http://dx.doi.org/10.1016/j.celrep.2017.09.060

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

Drumming in Mongolian Gerbils: Context or Arousal?

September 1, 2025

Seasonal Brain Shrinkage in Shrews Caused by Water Loss, Not Cell Death

September 1, 2025

Lower IGF1 Levels in Preeclampsia Affect Trophoblasts

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.