• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New multiscale view of the human brain

Bioengineer by Bioengineer
November 4, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. Zhenga et al. /PNAS

The architecture of the brain supports cognitive and behavioural functions and it is extremely complex with connections at multiple layers that interact with each other. However, research efforts are usually focused on a single spatial scale. In a study led by researchers of the Institute of Complex Systems of the University of Barcelona (UBICS), researchers studied the multiscale spatial organization of the brain and observed that, in a geometric network model, the layers at different resolution are self-similar, that is, as we move away, the geometric and connectivity structure of the layers remains the same.

In order to carry out this study, researchers used two high-quality datasets with maps of neural connections, connectomes, of eighty-four healthy subjects with five anatomical resolutions for each. According to M. Àngels Serrano, ICREA researcher at UBICS, “the results show that brain connectivity at different scales is organized with the same principles that lead to a efficient decentralized communication”.

The structure of the human brain expands over a series of interrelated length scales which increase its complexity. “The self-similarity we determined as a pattern in the multiscale structure of the human connectome introduces the simplicity as an organizing principle”, notes Serrano. This means that underlying connectivity rules that explain this structure are independent from the observation scale -at least within the analysed scales in this study-, “that is, we do not need a specific set of rules for each scale”, concludes Serrano.

The model predicts observations through the application of a renormalization protocol. This method is based on a geometric network model that places the nodes in a hidden metric space, defining a map, so that both nodes are more likely to be connected. This type of model enables researchers to explain the universal features of real networks.

For every scale, there is a remarkable congruence between empirical observations and predictions provided by the model. The results show that the same rules explain the formation of short and long-range connections in the brain within the rank of length scales that cover the used datasets”, concludes the UB researcher.

The implications of this discovery are several. On the one hand, it can be useful in fundamental debates, such as whether the brain is working close to a critical spot. On the other hand, it can have applications for advanced tools on brain functioning simulation.

###

Article reference:

M. Zhenga et al. “Geometric renormalization unravels self-similarity of the multiscale human connectome”. PNAS, https://doi.org/10.1073/pnas.1922248117

Media Contact
Bibiana Bonmati
[email protected]

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2020/11/011.html

Related Journal Article

http://dx.doi.org/10.1073/pnas.1922248117

Tags: Chemistry/Physics/Materials SciencesneurobiologySystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

How Black Holes Generate Intense Relativistic Jets

How Black Holes Generate Intense Relativistic Jets

October 6, 2025
From Engines to Nanochips: Scientists Unveil New Understanding of Heat Transfer

From Engines to Nanochips: Scientists Unveil New Understanding of Heat Transfer

October 6, 2025

Development and Utilization of a Halogen-Bonded Organic Framework Featuring N⋯Cl⁺⋯N Interactions

October 6, 2025

Iminium Ion Triplet Reactivity Powers Asymmetric Photocycloadditions

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Depression in Older Aortic Stenosis Patients: Insights Unveiled

Ant-Sheltered Tardigrades: A Unique Survival Strategy

ACOXL-AS1 Drives Pan-Cancer Growth, Especially Uterine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.