• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New molecular mechanism promotes growth of duckweed, an important plant in aquatic ecosystems

Bioengineer by Bioengineer
February 23, 2022
in Biology
Reading Time: 3 mins read
0
First Author Tadashi Toyama
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A representative producer in aquatic ecosystems, duckweed yields sustainable biomass for animal feeds, human food, and biofuels. It also contributes toward effective wastewater treatment. Due to these benefits, there is great interest in enhancing duckweed productivity – and recent research has identified a way to promote duckweed growth.

Plant growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants. Scientists based in Japan were interested in identifying the molecular mechanisms underlying a duckweed-PGPB interaction. Through their research, they successfully isolated a new PGPB (Ensifer sp. SP4), which increased the biomass productivity of duckweed by 2.7-fold with elevated photosynthesis.

“We found that organic compounds were transferred from the PGPB to duckweed. These compounds, particularly glutamic acid, might trigger an increase in the photosynthetic activity,” explained Tadashi Toyama, first author on this research paper.

Toyama and colleagues proposed a new model for the molecular mechanism of duckweed growth promotion by Ensifer sp. SP4, which they describe as a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture.

This is the first study to present a molecular mechanism model that unravels the interactions between duckweed plants and new plant growth-promoting bacteria in aquatic ecosystems. To learn more, read “Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis” published in the MPMI journal.

First Author Tadashi Toyama

Credit: Tadashi Toyama

A representative producer in aquatic ecosystems, duckweed yields sustainable biomass for animal feeds, human food, and biofuels. It also contributes toward effective wastewater treatment. Due to these benefits, there is great interest in enhancing duckweed productivity – and recent research has identified a way to promote duckweed growth.

Plant growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants. Scientists based in Japan were interested in identifying the molecular mechanisms underlying a duckweed-PGPB interaction. Through their research, they successfully isolated a new PGPB (Ensifer sp. SP4), which increased the biomass productivity of duckweed by 2.7-fold with elevated photosynthesis.

“We found that organic compounds were transferred from the PGPB to duckweed. These compounds, particularly glutamic acid, might trigger an increase in the photosynthetic activity,” explained Tadashi Toyama, first author on this research paper.

Toyama and colleagues proposed a new model for the molecular mechanism of duckweed growth promotion by Ensifer sp. SP4, which they describe as a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture.

This is the first study to present a molecular mechanism model that unravels the interactions between duckweed plants and new plant growth-promoting bacteria in aquatic ecosystems. To learn more, read “Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis” published in the MPMI journal.



Journal

Molecular Plant-Microbe Interactions

DOI

10.1094/MPMI-06-21-0157-R

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis

Article Publication Date

23-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

First Documented Instance of a Plant Mimicking Ants to Lure Pollinators

First Documented Instance of a Plant Mimicking Ants to Lure Pollinators

September 24, 2025
Male Crickets Build Muscle While Females Prioritize Reproductive Organs, Study Finds

Male Crickets Build Muscle While Females Prioritize Reproductive Organs, Study Finds

September 24, 2025

Teddy Bears as Conservation Tools: Why They Need a Fresh New Look

September 24, 2025

Groundbreaking Data Reveal Unseen Insights into Early Childhood Brain Development

September 24, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • New Study Reveals the Science Behind Exercise and Weight Loss

    53 shares
    Share 21 Tweet 13
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Screening Advances Boost CAR-T Therapy Effectiveness Against Multiple Myeloma and Other Cancers

Post-Elimination Measles Outbreak Spurs Renewed Focus on Vaccination Coverage

First Documented Instance of a Plant Mimicking Ants to Lure Pollinators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.