• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New model may help science overcome the brain’s fortress-like barrier

Bioengineer by Bioengineer
September 19, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Samah Jassam

New model may help science overcome the brain's fortress-like barrier

Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

The brain is protected by the near-impermeable blood brain barrier, a fortress which protects the brain but which also prevents the treatment of brain diseases, including brain tumours.

Dr Zaynah Maherally and team at the University of Portsmouth have developed a model that mimics the blood brain barrier, which could pave the way for better, more efficient and reliable tests of drugs to treat brain diseases.

,p>The model, the result of slow painstaking research started in 2007, is published in the FASEB Journal.

Dr Maherally said: "The blood brain barrier is strikingly complex and notoriously difficult for scientists to breach. Its role, to protect the brain, makes it difficult for most drugs to make their way into the brain to treat brain tumours.

"It is a dynamic structural, physiological and biochemical fortification that, in essence, protects the brain by providing multiple layers of armour, stopping molecules from entering the brain. It's highly selective in what it allows past.

"In a person with a brain disease like a brain tumour, or other neurological conditions such as Parkinson's disease, dementia or head injuries, the strikingly complex defence works against medics and scientists trying to deliver what could be life-saving or life-prolonging treatments."

A common way medics currently gain access to the brain is by using a pump to deliver drugs into the brain using a catheter, bypassing the blood brain barrier.

The researchers' major goal was to develop a 3D all-human reproducible and reliable model of the blood brain barrier using human cells in order to better simulate the human blood brain barrier for the study of diseases and treatments.

Many researchers use non-human animal cells to build blood brain barrier models with which to explore brain cancer and deliver drugs to the brain.

Animal models have been relied upon until now as there wasn't a reliable alternative and accessing human tissue for research can be difficult. Professor Geoff Pilkington, who leads the research group at Portsmouth, is delighted at the progress that's been made in modelling the blood brain barrier, a holy grail in the study of brain diseases.

He said: "This is the first real, 3D, all-human blood brain barrier model and it's hugely significant in our field."

Research will now widen, he said, to better understand how cancers metastasize from breast and lung to the brain as well as evaluating nano-particle drug delivery and making opportunities to create temporary openings in the barrier to allow drugs to pass through into the brain.

Dr Maherally said: "It's taken several years to get to this stage and we believe this model will significantly reduce the number of animals used in such studies and reduce the time it takes to get a promising therapeutic into clinical trials."

###

The research was funded by Animal Free Research UK, previously known as Dr Hadwen Trust, and is supported by the charity Brain Tumour Research.

CAPTION: Fortress: The blood brain barrier CREDIT: Samah Jassam

LINK: Paper available here – http://www.fasebj.org/content/early/2017/09/07/fj.201700162R.abstract

DoI: doi:10.1096/fj.201700162Rfj.201700162R

Media Contact

Kate Daniell
[email protected]
44-239-284-3743

http://www.port.ac.uk

Related Journal Article

http://dx.doi.org/10.1096/fj.201700162Rfj.201700162R

Share12Tweet8Share2ShareShareShare2

Related Posts

Atlas Reveals Testicular Aging Across Species

Atlas Reveals Testicular Aging Across Species

October 2, 2025
Stem Cell Reports Announces New Additions to Its Editorial Board

Stem Cell Reports Announces New Additions to Its Editorial Board

October 2, 2025

New Insights on Bluetongue Virus in South Asia

October 2, 2025

Ancient Ear Bones Rewrite the Story of Freshwater Fish Evolution

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    83 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Countries with Highest Hearing Loss Rates Show Lowest Hearing Aid Usage

Home-Based Early Medical Abortion Up to 12 Weeks: Safe, Effective, and on Par with Hospital Care

Stable Sodium-Ion Battery Cathode: K-rich Copper Hexacyanoferrate

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.