• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New model for bimolecular reactions in nanoreactors

Bioengineer by Bioengineer
August 4, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: HZB

Nanoreactors are tiny systems which facilitate specific chemical reactions, as a catalyst does. Many are found in biological systems, such as certain proteins. But chemists are also able to synthesise artificial nanoreactors to control chemical reactions. An important class of these nanoreactors has a "yolk & shell" architecture like an egg: a catalytically active metallic nanoparticle is surrounded by a shell consisting of a polymeric network. These kinds of nanoreactors can create isolated environments for specific reactions and restrict them to the tiny space inside the shell.

Mathematical description delivers new insights

"We have now mathematically described for the first time how two different molecules are transported to react within nanoreactors. The new model shows clearly what factors favour a given reaction", says Dr. Rafael Roa. Roa is first author of the publication in ACS Catalysis and a postdoc in the group headed by Prof. Joe Dzubiella at the HZB Institute for Soft Matter and Functional Materials.

What matters most?

Some of the results come as a surprise: contrary to expectations, the reaction rate is not so much limited by the concentration of the molecules in solution, but decisively by the permeability of the nanoreactor's shell. "This is extremely interesting since chemists today can often fine tune or even switch the permeability of these shells to specific molecules via variations in temperature or other parameters", explains co-author Dr. Won Kyu Kim.

Photo-activation taken into account

The new model is a big step forward from the older theory done many decades earlier that could handle only one molecule. "Our model is applicable to research on energy materials, and it can even take into account photo-activation of one of the molecules at the shell by sunlight", Dzubiella states. He has achieved with this work one of the goals of his European Research Council (ERC) Consolidator Grant (2015-2020).

Predictions will be put to test

Dzubiella's Soft Matter Theory group collaborates with HZB chemist Prof. Yan Lu, an acknowledged expert in synthetic nanoreactors. They are eager to test their theoretical predictions on real systems. "We're now able to better understand what happens, and we expect to predict how the catalytic effects of these types of nanoreactors can be controlled – through feedback loops, for instance, which will stop or start the reaction at will."

###

The project was fundet by the ERC Consolidator Project "NANOREACTOR" of Prof. Dzubiella and results are published in ACS Catalysis (2017): "Catalyzed Bimolecular Reactions in Responsive Nanoreactors". Rafael Roa, Won Kyu Kim, Matej Kanduč,Joachim Dzubiella, Stefano Angioletti-Uberti.

Media Contact

Antonia Rötger
[email protected]
49-308-062-43733
@HZBde

http://www.helmholtz-berlin.de

Original Source

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14702&sprache=en&typoid=1 http://dx.doi.org/10.1021/acscatal.7b01701

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Safflower Spininess: EMS and QTL-Seq Insights

Unraveling Safflower Spininess: EMS and QTL-Seq Insights

December 30, 2025
blank

Gender Identity: Breaking Down Stereotypes and Cognition

December 30, 2025

Unlocking Embryonic Secrets: Nematode Chromatin Accessibility Revealed

December 30, 2025

Impact of Wildlife on Livestock Production in Zimbabwe

December 30, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    77 shares
    Share 31 Tweet 19
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monomethyl Fumarate Protects Heart via HCAR2 Pathway

Fractal Brain Shapes Reveal Newborn Age, Genetics

TGM2-P2RX7 Loop Drives Pancreatic Cancer Drug Resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.