• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New model clarifies why water freezes at a range of temperatures

Bioengineer by Bioengineer
March 20, 2024
in Chemistry
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NEW ORLEANS, March 20, 2024 — From abstract-looking cloud formations to roars of snow machines on ski slopes, the transformation of liquid water into solid ice touches many facets of life. Water’s freezing point is generally accepted to be 32 degrees Fahrenheit. But that is due to ice nucleation — impurities in everyday water raise its freezing point to this temperature. Now, researchers unveil a theoretical model that shows how specific structural details on surfaces can influence water’s freezing point.

New model clarifies why water freezes at a range of temperatures

Credit: American Chemical Society

NEW ORLEANS, March 20, 2024 — From abstract-looking cloud formations to roars of snow machines on ski slopes, the transformation of liquid water into solid ice touches many facets of life. Water’s freezing point is generally accepted to be 32 degrees Fahrenheit. But that is due to ice nucleation — impurities in everyday water raise its freezing point to this temperature. Now, researchers unveil a theoretical model that shows how specific structural details on surfaces can influence water’s freezing point.

The researchers will present their results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2024 is a hybrid meeting being held virtually and in person March 17-21; it features nearly 12,000 presentations on a range of science topics.

“Ice nucleation is one of the most common phenomena in the atmosphere,” says Valeria Molinero, a professor of physical and materials chemistry. “In the 1950s and 1960s, there was a surge of interest in ice nucleation to control weather through cloud seeding and for other military goals. Some studies addressed how small shapes promote ice nucleation, but the theory was undeveloped, and no one has done anything quantitative.”

When temperatures drop, the molecules in liquid water, which normally speed around and zip past one another, lose energy and slow down. Once they lose enough energy, they grind to a halt, orient themselves to avoid repulsions and maximize attractions, and vibrate in place, forming the crystalline network of water molecules we call ice. When liquid water is completely pure, ice may not form until the temperature gets down to a frigid –51 degrees Fahrenheit; this is called supercooling. But when even the tiniest impurities — soot, bacteria or even particular proteins — are present in water, ice crystals can form more easily on the surfaces, resulting in ice formation at temperatures warmer than –51 degrees Fahrenheit.

Decades of research have revealed trends in how the shapes and structures of different surfaces affect water’s freezing point. In an earlier study on ice-nucleating proteins within bacteria, Molinero and her team found that the distances between the groups of proteins could impact the temperature at which ice formed. “There were distances that were very favorable for ice formation, and distances that were completely opposite,” says Molinero.

Similar trends had been observed for other surfaces, but no mathematical explanation had been found. “People before already had a sense of ‘oh maybe a surface will inhibit or promote ice nucleation,’ but no way to explain or predict what they observed experimentally,” says Yuqing Qiu, a postdoc, who is presenting the work at the meeting. Both Qiu and Molinero carried out this research at the University of Utah, though Qiu now works at the University of Chicago.

To address this gap, Molinero, Qiu and team gathered hundreds of previously reported measurements on how the angles between microscopic bumps on a surface affected water’s freezing temperature. They then tested theoretical models against the data. They used the models to consider factors that would encourage ice crystal formation, such as how strongly water binds to the surfaces and angles between structural features.

In the end, they identified a mathematical expression that shows that certain angles between surface features makes it easier for water molecules to gather and crystallize at relatively warmer temperatures. They say their model can help design materials with surfaces that would make ice form more efficiently with minimal energy input. Examples include snow or ice makers, or surfaces that are suitable for cloud seeding, which is used by several Western states to increase rainfall. It could also help better explain how tiny mineral particles in the atmosphere help make clouds through ice nucleation, potentially making weather models more effective.

The researchers plan to use this model to return to their studies of ice-nucleating proteins in bacteria. More than 200 proteins are believed to be ice-nucleating proteins, but their structures are not all known. The researchers hope to study proteins with structures that have been solved with AI tools, and then they will model how aggregates of those proteins affect ice formation.

The research was funded by the National Science Foundation, the Air Force Office of Scientific Research and the Yen Fellowship from the Institute for Biophysics Dynamics at the University of Chicago.

Visit the ACS Spring 2024 program to learn more about this presentation, “The most potent snow makers,” and more scientific presentations.

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: X, formerly Twitter | Facebook | LinkedIn | Instagram

Title
The most potent snow makers

Abstract
Several organisms have evolved proteins that control the formation of ice. Ice nucleating bacteria are the most potent ice-nucleating agents in the biosphere and the atmosphere, contributing to cloud glaciation and precipitation, and routinely used for the synthetic production of snow. These bacteria have proteins in their outer membrane that are able to nucleate ice at temperatures as high as –1 °C. This presentation will discuss our quest to elucidate the mechanisms by which bacterial proteins and other potent ice nucleants promote water crystallization, what makes them so outstanding, and whether we can design materials that outperform them.



Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.