• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New method to detect oxygen consumption in the brain

Bioengineer by Bioengineer
November 29, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human brain consumes an immense amount of energy and needs an uninterrupted supply of oxygen to maintain its activity. Therefore, the brain is equipped with a network of delicate blood vessels that transport oxygen molecules to brain cells. Cerebral metabolic rate of oxygen consumption (CMRO2), which indicates how much energy the brain is consuming at a given time, is a key index of brain activity. Direct quantification of CMRO2 is a significant objective in neurology, as CMRO2 is a valuable measure of tissue pathology in steady-state conditions, such as those associated with cancer, traumatic brain damage, and stroke. Moreover, its dynamic measurement during neuronal activity can reveal the metabolic processes underlying the brain’s functional responses. Although some current methods enable quantification of CMRO2, generally they do not provide information about the relative timing of metabolic events and vascular responses.

Brain-ox_in-text-fig

Credit: Chong et al., doi 10.1117/1.NPh.9.4.045006.

The human brain consumes an immense amount of energy and needs an uninterrupted supply of oxygen to maintain its activity. Therefore, the brain is equipped with a network of delicate blood vessels that transport oxygen molecules to brain cells. Cerebral metabolic rate of oxygen consumption (CMRO2), which indicates how much energy the brain is consuming at a given time, is a key index of brain activity. Direct quantification of CMRO2 is a significant objective in neurology, as CMRO2 is a valuable measure of tissue pathology in steady-state conditions, such as those associated with cancer, traumatic brain damage, and stroke. Moreover, its dynamic measurement during neuronal activity can reveal the metabolic processes underlying the brain’s functional responses. Although some current methods enable quantification of CMRO2, generally they do not provide information about the relative timing of metabolic events and vascular responses.

To gain a clearer picture of CMRO2 during brain activity, researchers from the University of Pennsylvania developed a novel optical technique. As reported in the SPIE journal Neurophotonics, this technique uses a pair of macromolecular phosphorescent probes with demonstrated application for the real-time monitoring of CMRO2 concurrently with cerebral blood flow (CBF) in a preclinical animal model. “Most current approaches for dynamic tracking of CMRO2 are based on measurements of hemoglobin oxygen saturation and CBF, such that CMRO2 dynamics becomes inherently tied to the dynamics of CBF. We wanted to develop a method free of this limitation,” explains Prof. Sergei A. Vinogradov, the study’s principal investigator.

The technique directly probes the brain’s oxygen gradient. The oxygen gradient depends on the difference between oxygen concentrations inside the brain’s blood vessels (intravascular) and in the immediate vicinity of the brain cells (extravascular). When brain cells become more metabolically active, they consume more oxygen, making this gradient steeper. Thus, this gradient carries information about how much oxygen is being consumed and can be used to determine the CMRO2.

The key step was to find a way to concurrently measure the difference between the extravascular and intravascular oxygen levels. For this, the researchers injected one phosphorescent probe, called Oxyphor PtR4, into the blood, and another probe, Oxyphor PtG4, was administered directly into the space between the blood vessels. The two Oxyphors have different colors, and by using two different lasers the team could measure the probes’ signals simultaneously with temporal resolution of ~7 Hz. The technique was applied to a preclinical model, and they demonstrated real-time computation and tracking of CMRO2 during functional activation of the brain. Using a third laser, the researchers also succeeded in measuring CBF in parallel with CMRO2 using the method called laser speckle contrast imaging.

Associate Editor Prof. Andy Shih, a principal investigator at Seattle Children’s Research Institute’s Center for Developmental Biology and Regenerative Medicine, said, “This clever development and use of probe pairs in the intra- and extravascular compartments opens the door to measurements of brain oxygen consumption.”

Prof. Arjun Yodh, the other corresponding author of the study, explained, “Our scheme offers an opportunity to directly observe changes in brain metabolism in real time and to concurrently compare vascular responses to metabolism responses. As technology develops, we anticipate that the method will become more broadly available for testing drugs and other effectors of brain metabolism, and it should permit more rigorous examination of metabolism models.”

Indeed, the study is the first to demonstrate the ability to monitor local blood flow and tissue oxygen gradients in real-time while the brain is functionally active. It opens up new possibilities for the dynamic measurement of brain metabolism by revealing additional details regarding the physiological processes accompanying neuronal activity.

Read the Gold Open Access article by S. H. Chong et al., “Real-time tracking of brain oxygen gradients and blood flow during functional activation,” Neurophotonics 9(4), 045006 (2022), doi 10.1117/1.NPh.9.4.045006.



Journal

Neurophotonics

DOI

10.1117/1.NPh.9.4.045006

Method of Research

Imaging analysis

Subject of Research

People

Article Title

Real-time tracking of brain oxygen gradients and blood flow during functional activation

Article Publication Date

28-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Pig Genomic Prediction with Integrated Data

Enhancing Pig Genomic Prediction with Integrated Data

August 27, 2025
Cyclosporine A: Beneficial or Harmful for Alzheimer’s?

Cyclosporine A: Beneficial or Harmful for Alzheimer’s?

August 27, 2025

Insect Diversity and Community Awareness in Semi-Arid Lands

August 27, 2025

COVID-19 and Alzheimer’s: Genetic Links and Brain Impact

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.