• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New method illuminates druggable sites on proteins

Bioengineer by Bioengineer
January 2, 2024
in Chemistry
Reading Time: 3 mins read
0
New method illuminates druggable sites on proteins
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA—Identifying new ways to target proteins involved in human diseases is a priority for many researchers around the world. However, discovering how to alter the function of these proteins can be difficult, especially in live cells. Now, scientists from Scripps Research have developed a new method to examine how proteins interact with drug-like small molecules in human cells—revealing critical information about how to potentially target them therapeutically.

New method illuminates druggable sites on proteins

Credit: Scripps Research

LA JOLLA, CA—Identifying new ways to target proteins involved in human diseases is a priority for many researchers around the world. However, discovering how to alter the function of these proteins can be difficult, especially in live cells. Now, scientists from Scripps Research have developed a new method to examine how proteins interact with drug-like small molecules in human cells—revealing critical information about how to potentially target them therapeutically.

The strategy, published in Nature Chemical Biology on January 2, 2024, uses a combination of chemistry and analytical techniques to reveal the specific places where proteins and small molecules bind together. Ultimately, this method could lead to the development of more targeted and effective therapeutics.

“Our new technology could be used to find new druggable sites on proteins for any human disease, from cancer to Alzheimer’s disease,” says associate professor, Department of Chemistry Christopher Parker, PhD, senior author of the study. “We’re unrestricted in how this could be used. Our work has the potential to usher in a whole new way of drug discovery.”

The Parker lab aims to discover how proteins function in every human cell type to develop effective therapeutics for a wide range of human diseases. In this study, Parker and his team built off his initial work in the lab of Scripps Research professor Benjamin Cravatt to create a new method of examining how proteins interact with small molecules in living cells. They developed an analytical strategy to better understand how these proteins engage with small molecules at much higher resolution than ever before. To do this, they used chemical probes called photoaffinity probes, which are molecules that can be activated by light to allow the probes to capture a bound protein.

By gathering data from the interactions of proteins with photoaffinity probes, the Parker team identified locations on proteins where small molecules could connect and bind. Essentially, the team found over a thousand new locks (binding sites on the proteins) and corresponding keys (small molecules), the vast majority of which were new places of small-molecule binding that had not been reported before. Additionally, they found new features of the binding sites–such as new shapes.

“Identifying these specific binding sites will help scientists design new molecules that fit these pockets even better, potentially leading to more effective therapeutics,” says Jacob M. Wozniak, co-first author, and former postdoctoral fellow in the Parker lab. The other co-first author of the paper was Weichao Li, PhD, a research associate also in the Parker lab.

Using the wealth of data in this study and collaborating with co-author Stefano Forli, PhD, associate professor in the Department of Integrative Structural and Computational Biology, the authors then modeled how certain molecules might bind to these proteins. This library of information could be used to design therapeutics that interact with proteins in a more targeted way.

“Our new process reveals additional opportunities for therapeutic intervention and discovery in human cells,” says Parker. “Next, we plan to use this technology to target proteins relevant for autoimmune diseases and cancer.”

Authors of the study, “Enhanced Mapping of Small Molecule Binding Sites in Cells” include Jacob M. Wozniak, Weichao Li, Paolo Governa, Li-Yun Chen, Appaso Jadhav, Stefano Forli and Christopher G. Parker of Scripps Research; and Ashok Dongre of Bristol-Myers Squibb.

This work was supported by finding from the National Institute of Allergic and Infectious Diseases (R01 AI156258, 1U19AII71443-0, and T32AI007244) and National Institutes of Health (R01GM069832).

 

About Scripps Research

Scripps Research is an independent, nonprofit biomedical institute ranked one of the most influential in the world for its impact on innovation by Nature Index. We are advancing human health through profound discoveries that address pressing medical concerns around the globe. Our drug discovery and development division, Calibr, works hand-in-hand with scientists across disciplines to bring new medicines to patients as quickly and efficiently as possible, while teams at Scripps Research Translational Institute harness genomics, digital medicine and cutting-edge informatics to understand individual health and render more effective healthcare. Scripps Research also trains the next generation of leading scientists at our Skaggs Graduate School, consistently named among the top 10 US programs for chemistry and biological sciences. Learn more at www.scripps.edu.



Journal

Nature Chemical Biology

DOI

10.5281/zenodo.8326534

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.