• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New method enables efficient isolation of raccoon-borne food poisoning pathogen

Bioengineer by Bioengineer
September 6, 2023
in Health
Reading Time: 3 mins read
0
Raccoons are known to carry the emerging zoonotic pathogen E. albertii
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – As cute as raccoons may look, their behaviors are troublesome, and so are their droppings. Known to contain Escherichia albertii—a harmful enteropathogen—raccoon feces challenge zoonotic researchers who grapple to isolate this bacterium for further study. Fortunately, Osaka Metropolitan University scientists have come up with a novel culture medium for efficient isolation of E. albertii, making progress toward alleviating this particular raccoon-conveyed threat.

Raccoons are known to carry the emerging zoonotic pathogen E. albertii

Credit: Shinji Yamasaki, Osaka Metropolitan University

Osaka, Japan – As cute as raccoons may look, their behaviors are troublesome, and so are their droppings. Known to contain Escherichia albertii—a harmful enteropathogen—raccoon feces challenge zoonotic researchers who grapple to isolate this bacterium for further study. Fortunately, Osaka Metropolitan University scientists have come up with a novel culture medium for efficient isolation of E. albertii, making progress toward alleviating this particular raccoon-conveyed threat.

Due to global warming, wildlife habitats are overlapping with human residential areas, raising concerns about the transmission and spread of zoonotic diseases. In recent years, an emerging zoonotic pathogen called E. albertii—transmitted by wild animals such as raccoons—has garnered attention due to its remarkable similarities to several strains of Escherichia coli (E. coli), including O157, and its potential for causing severe illness, particularly in children. However, characteristics of this bacterium, including its infection routes and antibiotic resistance status, remain unclear.

To identify the route of infection, it is essential to isolate and then investigate E. albertii from specimens of wild animals acting as vectors. However, the quantity of E. albertii in samples sourced from raccoons is often minuscule, making its extraction an ongoing challenge.

Addressing this issue, a research group led by Professor Shinji Yamasaki of the Graduate School of Veterinary Science at Osaka Metropolitan University has developed a novel culture medium that selectively promotes the growth of E. albertii from raccoon fecal samples. They succeeded in isolating E. albertii at a rate as high as 48%, even from samples with very low quantities of this bacterium.

Professor Yamasaki explained, “The selective enrichment medium developed in this study is expected to provide better insights into the epidemiology of E. albertii, facilitating improved control of food poisoning.”

Their findings were published in the Journal of Applied Microbiology.

 

###

About OMU 

Osaka Metropolitan University is a new public university established in April 2022, formed by merger between Osaka City University and Osaka Prefecture University. For more research news, visit https://www.omu.ac.jp/en/ or follow @OsakaMetUniv_en and #OMUScience.



Journal

Journal of Applied Microbiology

DOI

10.1093/jambio/lxad123

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Cefixime–tellurite-deoxycholate tryptic soy broth (CTD-TSB), a selective enrichment medium, for enhancing isolation of Escherichia albertii from wild raccoon fecal samples

Article Publication Date

27-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

BP Initiative Supports Over 10 Million Adults Managing Hypertension

September 15, 2025

Recurrent Patterns Shape Neocortical Sensory Inference

September 15, 2025

New Program Unveiled to Enhance Treatment for Specific Heart Failure Types

September 15, 2025

Navigating Conscience in Elder Care: A Deep Dive

September 15, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dual Yield: Vertical Solar Panels and Crops Flourish Together

BP Initiative Supports Over 10 Million Adults Managing Hypertension

Bridging Evidence Gaps in CHD Neurodevelopmental Assessments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.