• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New metamaterial can switch from hard to soft — and back again

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR–When a material is made, you typically cannot change whether that material is hard or soft. But a group of University of Michigan researchers have developed a new way to design a "metamaterial" that allows the material to switch between being hard and soft without damaging or altering the material itself.

Metamaterials are man-made materials that get their properties–in this case, whether a material is hard or soft–from the way the material is constructed rather than the material that constructs it. This allows researchers to manipulate a metamaterial's structure in order to make the material exhibit a certain property.

In the group's study, published in the journal Nature Communications, the U-M researchers discovered a way to compose a metamaterial that can be easily manipulated to increase the stiffness of its surface by orders of magnitude–the difference between rubber and steel.

Since these properties are "topologically protected," meaning that the material's properties come from its total structure, they're easily maintained even as the material shifts repeatedly between its hard and soft states.

"The novel aspect of this metamaterial is that its surface can change between hard and soft," said Xiaoming Mao, assistant professor of physics. "Usually, it's hard to change the stiffness of a traditional material. It's either hard or soft after the material is made."

For example, a dental filling cannot be changed after the dentist has set the filling without causing stress, either by drilling or grinding, to the original filling. A guitar string cannot be tightened without putting stress on the string itself, according to Mao.

Mao says the way an object comes in contact with the edge of the metamaterial changes the geometry of the material's structure, and therefore how the material responds to stress at the edge. But metamaterial's topological protection allows the inside of the metamaterial remains damage free.

The material could one day be used to build cars or rocket launch systems. In cars, the material could help absorb impacts from a crash.

"When you're driving a car, you want the car to be stiff and to support a load," Mao said. "During a collision, you want components to become softer to absorb the energy from the collision and protect the passenger in the car."

The researchers also suggest the material could be used to make bicycle tires that could self-adjust to ride more easily on soft surfaces such as sand, or to make damage-resistant, reusable rockets.

###

Study
Xiaoming Mao

Media Contact

Morgan Sherburne
[email protected]
734-647-1844
@umich

http://www.umich.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

ABCD2 Enhances Carotid Stenosis Diagnosis with CT Angiography

October 27, 2025
Dipeptide’s Impact on Ionic Liquid Micellization Explored

Dipeptide’s Impact on Ionic Liquid Micellization Explored

October 27, 2025

Fluid Strategies in Preterm Infants with PDA

October 27, 2025

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ABCD2 Enhances Carotid Stenosis Diagnosis with CT Angiography

Dipeptide’s Impact on Ionic Liquid Micellization Explored

Fluid Strategies in Preterm Infants with PDA

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.