• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New mechanisms in the development of stroke were discovered

Bioengineer by Bioengineer
June 14, 2024
in Health
Reading Time: 3 mins read
0
Graphical abstract of single-cell gene-regulatory networks.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A group of researchers from the University of Tartu and international scientists discovered new mechanisms of how stroke occurs by studying changes in mouse and human cells. The study lays the foundation for new, more precise treatment methods and better diagnostics, which could improve cardiovascular health in the future.

Graphical abstract of single-cell gene-regulatory networks.

Credit: Author: Katyayani Sukhavasi

A group of researchers from the University of Tartu and international scientists discovered new mechanisms of how stroke occurs by studying changes in mouse and human cells. The study lays the foundation for new, more precise treatment methods and better diagnostics, which could improve cardiovascular health in the future.

One of the authors of the study, a PhD student of Faculty of Medicine of University of Tartu Katyayani Sukhavasi said that affecting people of all ages, every fifth minute, someone suffers a stroke resulting in brain bleeding or ischemia. „Consequently, many people die or get life-long disabilities. Hardening of the arteries, called atherosclerosis, is a major cause of stroke. Critical for this process are the various types of cells in the vascular wall, mainly endothelial cells, smooth muscle cells and different forms of immune and inflammatory cells.“

In the current study, the team of Giuseppe Mocci, Katyayani Sukhavasi, Arno Ruusalepp, Heli Järve, and Johan Björkegren utilized single-cell RNA sequencing (Smart-Seq2) to generate the deepest multi-species single cell omics dataset of atherosclerosis to date. Next, by applying advanced bioinformatic analysis to this dataset, the authors revealed cell-specific gene expression patterns underlying transformation of vascular cells leading to advanced atherosclerosis.

Besides successfully reidentifying vascular cell subclusters identified earlier by others, the authors also markedly expanded the gene content of three distinct smooth muscle cell subclusters associated with conversion to an osteogenic phenotype during the advanced stages of atherosclerosis. „In parallel, three macrophage subclusters associated with proinflammation and Trem2-rich lipid content in advanced atherosclerosis were identified,” said Sukhavasi.

Giuseppe Mocci from Karolinska Institutet mentioned that by uniquely integrating these six subclusters with 135 human gene-regulatory networks (GRNs), the study pinpointed several GRNs with key disease drivers responsible for vascular cell transformation leading to symptomatic carotid stenosis. Next, by uniquely integrating these six subclusters with 135 human gene-regulatory networks (GRNs), the study pinpointed several GRNs with key disease drivers responsible for vascular cell transformation leading to symptomatic carotid stenosis.

Dr Arno Ruusalepp said that combined bulk and single-cell RNA sequencing data from different species will provide information about the biological mechanisms that cause complex diseases, such as stroke. “Such an approach allows us to find key locations in gene networks that are likely to be more effective treatment targets than to try the traditional one-gene-by-gene approach, especially in complex diseases”.

Dr Heli Järve added that this research combines genomics, clinical medicine and public health. Real change requires the cooperation of all parties. “By understanding the molecular mechanisms of symptomatic atherosclerosis, our research lays the foundation for new more targeted therapies and improved diagnostics of stroke, and thus, may in the longer perspective, improve cardiovascular health for millions of people worldwide,“ emphasized Dr. Johan Björkegren from Karolinska Institutet.



Journal

Circulation Research

DOI

10.1161/CIRCRESAHA.123.323184

Method of Research

Experimental study

Subject of Research

People

Article Title

Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis

Article Publication Date

19-Apr-2024

COI Statement

J.L.M. Björkegren and A. Ruusalepp are shareholders of Clinical Gene Networks
AB (CGN) that has an invested interest in STARNET.

Share12Tweet8Share2ShareShareShare2

Related Posts

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

September 11, 2025
Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

September 11, 2025

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

September 11, 2025

Exploring Ginseng’s Diverse Benefits: A Summary of Its Immunomodulatory Effects, Quality of Life Enhancements, and Antitumor Properties

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.