• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New measurements to guide radiation therapy

Bioengineer by Bioengineer
December 19, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Vincent Lemelin, Université de Sherbrooke, Québec, Canada

WASHINGTON, D.C., December 19, 2017 — When ionizing radiation passes through living tissue, it interacts with molecules present in the cells, stripping away electrons and producing charged species known as ions. Ionizing radiation used for cancer treatment includes gamma rays, X-rays and energetic particles such as alpha and beta rays.

The electrons produced by this process, known as secondary electrons, can themselves go on to wreak further havoc, causing even more dramatic changes. This week in the Journal of Chemical Physics, from AIP Publishing, a group of investigators reports studies of the impact of secondary electrons on a model of DNA.

The measurements were made in a condensed-phase environment. Compared to isolated electron-molecule experiments, the condensed-phase measurements are made under conditions closer to those found in living tissue. The results will be used to accurately calculate the damage and radiation dose delivered to patients in radiotherapy, when cancer cells are bombarded with ionizing radiation.

Secondary electrons are the most important species created by ionizing radiation in living tissue. These "low energy electrons," or LEEs, interact with biological molecules, sometimes breaking them into fragments. One of the affected molecules is deoxyribonucleic acid, or DNA, the molecule that carries genetic code. The long, chainlike DNA molecule consists of a ladder of base pairs connected to each other through a deoxyribose phosphate group.

The precise way LEEs interact with portions of the DNA molecule, the bases themselves or the phosphate backbone, is still not precisely understood, although LEEs do have enough energy to initiate DNA strand breaks. This can affect cell function, leading to mutations and even cell death. In this week's report, the investigators employed a model molecule known as dimethyl phosphate, or DMP, to study the interaction of LEEs with the phosphate backbone of DNA.

New radiation treatment methods, currently under development, can precisely target the radiation to specific cancer cells or even specific locations within those cells. This method, known as targeted radionuclide therapy, or TRT, involves the use of molecules labeled with radioactive atoms that are injected into patients and localized in cancer cells. Once in place, the radioactive molecules produce ionizing radiation inside or close to cancer cells. This radiation then goes on to generate localized LEEs.

An important part of the TRT method involves computer simulations used to predict the interactions of LEEs with biological matter and the amount of radiation absorbed by the targeted biomolecules or cells. One of the key parameters in these simulation models are absolute cross sections, which give the probability of interaction between a single LEE and a target molecule. The work reported here represents the first direct measurement of absolute cross sections for the phosphate unit in DNA, values required to calculate strand breaks induced by LEEs.

The DNA present in a living system is surrounded by water and other types of molecules, so studying these processes in a more realistic environment is particularly desirable. In future work, the DNA will be embedded in water and molecular oxygen, known to sensitize cells to radiotherapy.

###

The article, "Absolute vibrational excitation cross sections for 1-18 eV electron scattering from condensed dimenthyl phosphate (DMP)," is authored by Vincent Lemelin, Andrew Bass, Richard Wagner and Leon Sanche. The article will appear in the Journal of Chemical Physics Dec. 19, 2017 (DOI: 10.1063/1.5008486). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5008486.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

Related Journal Article

http://dx.doi.org/10.1063/1.5008486

Share12Tweet7Share2ShareShareShare1

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.