• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New material with ferroelectricity and ferromagnetism may lead to better computer memory

Bioengineer by Bioengineer
December 20, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Tokyo Institute of Technology

Traditional computer memory, known as DRAM, uses electric fields to store information. In DRAM, the presence or absence of an electric charge is indicated either by number 1 or number 0. Unfortunately, this type of information storage is transient and information is lost when the computer is turned off. Newer types of memory, MRAM and FRAM, use long-lasting ferromagnetism and ferroelectricity to store information. However, no technology thus far combines the two.

To address this challenge, a group of scientists led by Prof. Masaki Azuma from the Laboratory for Materials and Structures at Tokyo Institute of Technology, along with associate Prof. Hajime Hojo at Kyushu University previously at Tokyo Tech, Prof. Ko Mibu at Nagoya Institute of Technology and five other researchers demonstrated the multiferroic nature of a thin film of BiFe1?xCoxO3 (BFCO). Multiferroic materials exhibit both ferromagnetism and ferroelectricity. These are expected to be used as multiple-state memory devices. Furthermore, if the two orders are strongly coupled and the magnetization can be reversed by applying an external electric field, the material should work as a form of low power consumption magnetic memory.

Previous scientists had speculated that ferroelectric BFO thin film, a close relative of BFCO, might be ferromagnetic as well, but they were thwarted by the presence of magnetic impurity. Prof. M. Azuma's team successfully synthesized pure, thin films of BFCO by using pulsed laser deposition to perform epitaxial growth on a SrTiO3 (STO) substrate. They then conducted a series of tests to show that BFCO is both ferroelectric and ferromagnetic at room temperature. They manipulated the direction of ferroelectric polarization by applying an electric field, and showed that the low-temperature cychloidal spin structure, essentially the same as that of BiFeO3, changes to a collinear one with ferromagnetism at room temperature.

In the future, the scientists hope to realize electrical control of ferromagnetism, which could be applied in low power consumption, non-volatile memory devices.

###

Media Contact

Emiko Kawaguchi
[email protected]
81-357-342-975

http://www.titech.ac.jp/english/index.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Hip Fracture Care: Surgery and Mobility Insights

October 24, 2025

Health Workers’ Radiation Knowledge Influences Attitudes

October 24, 2025

Bat Flies’ Microbial Networks Vary by Host Specificity

October 24, 2025

Evaluating Solvents for Lycopene Recovery Efficiency

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    181 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Hip Fracture Care: Surgery and Mobility Insights

Health Workers’ Radiation Knowledge Influences Attitudes

Bat Flies’ Microbial Networks Vary by Host Specificity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.