• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New lipid shape atlas holds key to early disease detection

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ion mobility-mass spectrometry allowed for a closer examination

IMAGE

Credit: The McLean Group

Every bit of information about a person’s health – their exposure to chemicals, their inherited risks, their current illnesses – lies within their molecules. That’s a diverse array of substances that amounts to a number so long, it doesn’t have a name: 1 with 50 zeros after it.

A team of Vanderbilt University chemists started decoding that total molecular picture by examining 456 variations of one class of molecule, lipids, which are vital to cell membrane structure, regulate cell activities and store energy. The role a lipid plays in the body is determined by its shape, and the methods and atlas this team developed, which match individual lipid molecules to their shapes, holds the key ultimately to early diagnosis of many different disorders.

“Lipids are well known to be the bellwether of disease,” said John McLean, Stevenson Professor of Chemistry. “Dysregulation can mean everything from inflammation to very specific disease states. Because lipids subtly change based on what’s going on in the body, we can use an analytic strategy to map out what shape that lipids adopt as a means to identify them.”

Formerly, a single set of measurements could correspond to many different kinds of lipids, he said, but the Vanderbilt team’s atlas of lipid structures greatly narrows the possibilities. Other researchers, such as those who study lipids and their role in diseases, can go to this atlas for clues in their own work, plus add to it.

These results were published online today in Nature Communications in a paper titled “Ion Mobility Conformational Lipid Atlas for High Confidence Lipidomics.”

Lead author Katrina Leaptrot, a post-doctoral scholar, said the work was made possible by a relatively new technology called ion mobility-mass spectrometry, which allows scientists to analyze molecules with more scrutiny. She spent months looking for patterns in her data and learned that a lipid’s shape, and thus its ability to predict dysregulation, was most impacted by the length of its tail and how many double bonds lay in those tails.

A lipid’s tail length is a count of the number of carbon atoms it contains, while double bonds determine how strongly each carbon atom is bound to the one next to it. Double bonds create kinks in the lipids that affect normal lipid functions as well as dysregulations. For example, saturated fats are lipids without double bonds, which raises cholesterol levels in your blood.

“Now that we can better decode how nature assembled these molecules, labs around the world will be able to use this lipid atlas and contribute their own data to uncharted regions,” Leaptrot said.

###

Media Contact
Heidi Nieland Hall
[email protected]

Original Source

https://news.vanderbilt.edu/2019/02/28/new-lipid-shape-atlas-holds-key-to-early-disease-detection/

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-08897-5

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Pig, Mouse, and Human Genomes: Insights Revealed

Comparing Pig, Mouse, and Human Genomes: Insights Revealed

December 18, 2025
Vigna radiata CLC Genes: Key Players in Salt Resistance

Vigna radiata CLC Genes: Key Players in Salt Resistance

December 18, 2025

Boosting Cassava Yield and Drought Resilience via Vascular Potassium

December 17, 2025

Pork Cut Quality Revealed Through Metabolomic and Lipidomic Profiles

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultra-Processed Diet’s Effects on Adolescent Rat Metabolism

Comparing Pig, Mouse, and Human Genomes: Insights Revealed

CD44: Puerarin’s Potential Target Revealed in Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.