• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New light for shaping electron beams

Bioengineer by Bioengineer
September 29, 2022
in Chemistry
Reading Time: 3 mins read
0
Recent experiments at the University of Vienna show that light (red) can be used to arbitrarily shape electron beams (yellow), opening new possibilities in electron microscopy and metrology.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new technique that combines electron microscopy and laser technology enables programmable, arbitrary shaping of electron beams. It can potentially be used for optimizing electron optics and for adaptive electron microscopy, maximizing sensitivity while minimizing beam-induced damage. This fundamental and disruptive technology was now demonstrated by researchers at the University of Vienna, and the University of Siegen. The results are published in PRX.

Recent experiments at the University of Vienna show that light (red) can be used to arbitrarily shape electron beams (yellow), opening new possibilities in electron microscopy and metrology.

Credit: stefaneder.at, University of Vienna

A new technique that combines electron microscopy and laser technology enables programmable, arbitrary shaping of electron beams. It can potentially be used for optimizing electron optics and for adaptive electron microscopy, maximizing sensitivity while minimizing beam-induced damage. This fundamental and disruptive technology was now demonstrated by researchers at the University of Vienna, and the University of Siegen. The results are published in PRX.

When light passes through turbulent or dense material, e.g. the Earth’s atmosphere or a millimetre-thick tissue, standard imaging technologies experience significant limitations in the imaging quality. Scientists therefore place deformable mirrors in the optical path of the telescope or microscope, which cancel out the undesired effects. This so-called adaptive optics has led to many breakthroughs in astronomy and deep-tissue imaging.

However, this level of control has not yet been achieved in electron optics even though many applications in materials science and structural biology demand it. In electron optics, scientists use beams of electrons instead of light to image structures with atomic resolution. Usually, static electromagnetic fields are used to steer and focus the electron beams. 

In a new study published in PRX, researchers from the University of Vienna (at the Faculty of Physics and the Max Perutz Labs) and the University of Siegen have now shown that it is possible to deflect electron beams almost arbitrarily using high-intensity, shaped light fields, which repel electrons. Kapitza and Dirac first predicted this effect in 1933, and the first experimental demonstrations (Bucksbaum et al., 1988, Freimund et al., 2001) became possible with the advent of high-intensity pulsed lasers. 

The Vienna-based experiment now makes use of our ability to shape light. A laser pulse is shaped by a spatial light modulator and interacts with a counter-propagating, synchronized pulsed electron beam in a modified scanning electron microscope. This enables imprinting on demand transverse phase shifts to the electron wave, enabling unprecedented control over electron beams. 

The potential of this innovative technology is demonstrated by creating convex and concave electron lenses and by generating complex electron intensity distributions. As pointed out by the lead author of the study, Marius Constantin Chirita Mihaila: “We are writing with the laser beam in the transverse phase of the electron wave. Our experiments pave the way for wavefront shaping in pulsed electron microscopes with thousands of programmable pixels. In the future, parts of your electron microscope may be made from light.”

In contrast to other competing electron-shaping technologies, the scheme is programmable, and avoids losses, inelastic scattering, and instabilities due to the degradation of material diffraction elements. Thomas Juffmann, head of the group at the University of Vienna, adds, “Our shaping technique enables aberration correction and adaptive imaging in pulsed electron microscopes. It can be used to adjust your microscope to the specimens you study to maximize sensitivity.”



DOI

10.1103/PhysRevX.12.031043

Article Title

Transverse Electron-Beam Shaping with Light

Article Publication Date

26-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Proteome-wide Selectivity of Diverse Electrophiles

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
blank

Tufts Physicists Shed Light on the Origins of Matter

October 30, 2025

Observing a Black Hole Flicker Across Time

October 30, 2025

When Electrons Harmonize and Perceive Their Surroundings

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Moffitt Research Reveals Complementary Approaches to Combat Resistance to KRAS G12C Inhibitors in Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.