• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New laser technique will allow more powerful — and smaller — particle accelerators

Bioengineer by Bioengineer
April 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (H. Palmer and K. Palmisano)

By observing electrons that have been accelerated to extremely high energies, scientists are able to unlock clues about the particles that make up our universe.

Accelerating electrons to such high energies in a laboratory setting, however, is challenging: typically, the more energetic the electrons, the bigger the particle accelerator. For instance, to discover the Higgs boson–the recently observed “God particle,” responsible for mass in the universe–scientists at the CERN laboratory in Switzerland used a particle accelerator nearly 17 miles long.

But what if there was a way to scale down particle accelerators, producing high-energy electrons in a fraction of the distance?

In a paper published in Physical Review Letters, scientists at the University of Rochester’s Laboratory for Laser Energetics (LLE) outlined a method to shape intense laser light in a way that accelerates electrons to record energies in very short distances: the researchers estimate the accelerator would be 10,000 times smaller than a proposed setup recording similar energy, reducing the accelerator from nearly the length of Rhode Island to the length of a dining room table. With such a technology, scientists could perform tabletop experiments to probe the Higgs boson or explore the existence of extra dimensions and new particles that could lead to Albert Einstein’s dream of a grand unified theory of the universe.

“The higher energy electrons are required to study fundamental particle physics,” says John Palastro, a scientist at the LLE and the paper’s lead author. “Electron accelerators provide a looking glass into a sub-atomic world inhabited by the fundamental building blocks of the universe.”

While this research is currently theoretical, the LLE is working to make it a reality through plans to construct the highest-powered laser in the world at the LLE. The laser, to be named EP-OPAL, will allow the researchers to create the extremely powerful sculpted light pulses and technology described in this paper.

The electron accelerator outlined by the researchers relies on a revolutionary technique for sculpting the shape of laser pulses so that their peaks can travel faster than the speed of light.

“This technology could allow electrons to be accelerated beyond what is possible with current technologies,” says Dustin Froula, a senior scientist at the LLE and one of the paper’s authors.

In order to sculpt the laser pulses, the researchers developed a novel optic setup resembling a circular amphitheater with wavelength-sized “steps” used to create a time delay between concentric rings of light delivered from a high-power laser.

A typical lens focuses each ring of light from a laser to a single distance from the lens, forming a single spot of high-intensity light. Instead of using a typical lens, however, the researchers use an exotically shaped lens, which allows them to focus each ring of light to a different distance from the lens, creating a line of high intensity rather than a single spot.

When this sculpted light pulse enters a plasma–a hot soup of freely moving electrons and ions–it creates a wake, similar to the wake behind a motorboat. This wake propagates at the speed of light. Much like a water skier riding in a boat’s wake, the electrons then accelerate as they ride the wake of the sculpted laser light pulses.

These “laser wakefield accelerators” (LWFA) were first theorized nearly 40 years ago, and were advanced by the invention of chirped-pulse amplification (CPA), a technique developed at the LLE by 2018 Nobel Prize recipients Donna Strickland and Gerard Mourou.

Previous versions of LWFA, however, used traditional, unstructured light pulses that propagated more slowly than the speed of light, which meant the electrons would outrun the wake, limiting their acceleration. The new sculpted light pulses enable faster-than-light speeds so electrons can ride the wake indefinitely and be continually accelerated.

“This work is extremely innovative and would be a game changer for laser-accelerators,” says Michael Campbell, director of the LLE. “This research shows the value of theoretical and experimental plasma physics working closely together with outstanding laser scientists and engineers–it represents the best of the culture of LLE.”

###

The research is supported by the US Department of Energy (DOE) Office of Fusion Energy Sciences and the New York State Energy Research and Development Authority.

The LLE was established at the University in 1970 and is the largest US DOE university-based research program in the nation. As a nationally funded facility, supported by the National Nuclear Security Administration as part of its Stockpile Stewardship Program, the LLE conducts implosion and other experiments to explore fusion as a future source of energy, to develop new laser and materials technologies, and to conduct research and develop technology related to high-energy-density phenomena.

Media Contact
Lindsey Valich
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/Physics.13.49

Tags: AstrophysicsAtomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesOpticsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1111 shares
    Share 444 Tweet 277
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RNA-Seq Reveals Nucleotide Metabolism in Medulloblastoma

Repeated Brain Tumor Sampling Reveals Treatment Response in Glioblastoma Patients

New Immunotherapy Combo Eradicates Colorectal Liver Metastases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.