• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New insights into nanochannel fabrication using femtosecond laser pulses

Bioengineer by Bioengineer
November 2, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent progress in the fabrication of nanostructures has led to their application in several fields, including biomedicine, chemistry, materials engineering, and environmental remediation. In particular, nanochannels (nanostructures with at least one physical dimension smaller than 100 nm) are being actively studied for their potential use in DNA stretching, nanofluidics, and artificial membranes. For example, in traditional DNA testing methods based on polymerase chain reaction, a single mutated gene is easily treated as noise. Inside nanochannels with sub-100-nm diameter, the DNA molecule can be stretched along a line. As a result, it is possible to investigate the base pairs one-by-one along a single DNA, through which the single mutated gene can be precisely discovered.

Surface and side views of a sample showcasing a nanochannel with a length of several microns and a diameter well below 30 nm, implying a very high aspect ratio (>200). Image credit: Lu, Kai, et al., doi 10.1117/1.APN.1.2.026004″></p>
<p class=Credit: Lu, Kai, et al., doi 10.1117/1.APN.1.2.026004

Recent progress in the fabrication of nanostructures has led to their application in several fields, including biomedicine, chemistry, materials engineering, and environmental remediation. In particular, nanochannels (nanostructures with at least one physical dimension smaller than 100 nm) are being actively studied for their potential use in DNA stretching, nanofluidics, and artificial membranes. For example, in traditional DNA testing methods based on polymerase chain reaction, a single mutated gene is easily treated as noise. Inside nanochannels with sub-100-nm diameter, the DNA molecule can be stretched along a line. As a result, it is possible to investigate the base pairs one-by-one along a single DNA, through which the single mutated gene can be precisely discovered.

Most application fields would benefit from nanochannels made on hard and brittle materials, such as silica, diamond, and sapphire, which offer high chemical stability and durability in harsh environments. Unfortunately, fabricating deep nanochannels on such materials is challenging — so far, only superficial nanochannels via lithographic techniques have been widely and successfully reproduced.

A team of researchers from Xi’an Jiaotong University, China, is focusing on a promising technology for nanostructure fabrication: femtosecond laser direct writing (FLDW). Put simply, FLDW makes use of extremely short (10-15 s) and energetic laser pulses with high precision to create desired nanostructures (e.g., nanoholes, nanopores, and nanoslits). In their latest study, published in Advanced Photonics Nexus, the team successfully used FLDW to create silica nanochannels with a diameter of 30 nm, smaller than reported in any previous study, and an aspect ratio of over 200. This was attributed to a novel laser–matter interaction phenomenon that was discovered in the process.

In their work, the team employed a Bessel beam — a laser beam that preserves its shape as it propagates and even when focused down to a small spot. A single Bessel beam pulse of 515-nm wavelength (acquired from a 1030-nm laser through frequency doubling) is focused at just the right distance from the surface of a silica sample. A few experiments with different laser pulse energies and sample distances showed very impressive results. Under low pulse energy, depending on the sample distance, a 30-nm size nanochannel or a pure crater structure was discovered close (less than 1 μm) to the silica surface. Under high pulse energy, a much longer cavity would form deep inside (5 μm below) the bulk of the material with a crater on the surface at the same time.

After careful theoretical analysis and simulations, the team realized that a hitherto-unobserved laser–material interaction was at play, which the team calls “surface assisting material ejection.” In this process, the removal of superficial material opens a window for the expansion and ejection of gasified material deeper within the bulk, producing cavities in the internal “hot domain” created by the Bessel beam.

Paulina Segovia-Olvera, Associate Editor of Advanced Photonics Nexus, notes that this work contributes highly to the advancement of knowledge in the field of material processing with lasers: “This work provides novel insights into the fundamentals of laser interaction with matter. It demonstrates that it is possible to fabricate nanochannel structures with dimensions well below the diffraction limit, which typically sets the lower limit on the nanostructure feature size for traditional laser-based fabrication.”

Given this advancement in knowledge, this study may pave the way for the adoption of FLDW as a robust, flexible, and cost-effective method for fabricating nanochannels with submicrometer precision. In turn, this can help advance its application in other areas, such as genomic science, catalysis, and sensors.

Read the Gold Open Access article by Y. Lu, L. Kai, et al., “Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection,” Adv. Photon. Nexus 1(2), 026004 (2022), doi 10.1117/1.APN.1.2.026004.



Journal

Advanced Photonics Nexus

DOI

10.1117/1.APN.1.2.026004

Article Title

Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection

Article Publication Date

1-Nov-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

August 27, 2025

Fluoxetine’s Impact on Weight and Waist Size

August 27, 2025

c-di-GMP Boosts TLR4-Adjuvanted TB Vaccine Efficacy

August 26, 2025

Are Combined EHR Datasets Beneficial for Research?

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

Fluoxetine’s Impact on Weight and Waist Size

c-di-GMP Boosts TLR4-Adjuvanted TB Vaccine Efficacy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.