• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

New innovations to combat resistant infections

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two scientists at the University of Bristol have been awarded prestigious research grants to develop novel technologies that will help fight the rise of antimicrobial resistance (AMR).

Funded by a consortium of four UK research councils through a focussed call, "AMR Theme 2: Accelerating Therapeutic and Diagnostics Development", Innovation Grants are designed to "support untested, high risk/high reward research that will provide new insights, be transformative and stimulate creative thinking."

One of the University of Bristol projects is led by Dr Matthew Avison in the School of Cellular & Molecular Medicine. It aims to develop a new rapid diagnostic test that can predict which antibiotics might be used to treat an infection. Such a test would help doctors prescribe effective antibiotics first time and make them less reliant on the latest, strongest antibiotics, holding them back for when their use is really necessary.

Dr Avison said "Bacteria defeat antibiotics in many ways, but most produce enzymes – machines that destroy antibiotics. If we identify these enzymes in an infection, we can alert doctors to steer clear of certain antibiotics, and focus on the ones most likely to work."

The other project, led by Professor Bo Su in the School of Oral & Dental Sciences, aims to generate novel nanopatterned surfaces on clinically relevant materials that are able to kill a wide range of bacteria, including antimicrobial-resistant pathogens.

Professor Su said "Biomaterials-associated infection is one of the dominant causes of implant failure. Currently, antimicrobial biomaterials are largely reliant upon antibiotics and antimicrobial agents. However, a critical drawback is that they are transient. Over a period of time, the reservoir of leaching antimicrobial agent is limited and subject to depletion. Inspired by nanostructured surfaces found on insect wings, which kill bacteria through physical rupture of their cell walls, we hope to develop such novel antimicrobial surfaces that will be used for next-generation biomedical devices and implants."

Dr Avison is also Impact Lead for the BristolBridge consortium, which is funded by the Engineering and Physical Sciences Research Council to "Bridge the Gaps" between engineers and physical scientists and those with expertise in AMR., He added: The award of two AMR Innovation Grants to Bristol University further enhances our already extensive portfolio of AMR research. And thanks to BristolBridge-funded pump-priming projects, we look forward to seeing Bristol University academics develop more technological solutions to the threat of AMR in the future".

###

Media Contact

Simon Davies
[email protected]
44-117-928-8086
@BristolUni

http://www.bristol.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Iron Imbalance in Brain and Body Linked to Parkinson’s

Iron Imbalance in Brain and Body Linked to Parkinson’s

August 19, 2025
Study Shows Intensive Blood Pressure Targets Offer Cost-Effective Benefits

Study Shows Intensive Blood Pressure Targets Offer Cost-Effective Benefits

August 19, 2025

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

August 19, 2025

Assembly-Dependent Feedback Controls Photosynthetic Protein Translation

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Iron Imbalance in Brain and Body Linked to Parkinson’s

Study Shows Intensive Blood Pressure Targets Offer Cost-Effective Benefits

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.