• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

New innovations to combat resistant infections

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two scientists at the University of Bristol have been awarded prestigious research grants to develop novel technologies that will help fight the rise of antimicrobial resistance (AMR).

Funded by a consortium of four UK research councils through a focussed call, "AMR Theme 2: Accelerating Therapeutic and Diagnostics Development", Innovation Grants are designed to "support untested, high risk/high reward research that will provide new insights, be transformative and stimulate creative thinking."

One of the University of Bristol projects is led by Dr Matthew Avison in the School of Cellular & Molecular Medicine. It aims to develop a new rapid diagnostic test that can predict which antibiotics might be used to treat an infection. Such a test would help doctors prescribe effective antibiotics first time and make them less reliant on the latest, strongest antibiotics, holding them back for when their use is really necessary.

Dr Avison said "Bacteria defeat antibiotics in many ways, but most produce enzymes – machines that destroy antibiotics. If we identify these enzymes in an infection, we can alert doctors to steer clear of certain antibiotics, and focus on the ones most likely to work."

The other project, led by Professor Bo Su in the School of Oral & Dental Sciences, aims to generate novel nanopatterned surfaces on clinically relevant materials that are able to kill a wide range of bacteria, including antimicrobial-resistant pathogens.

Professor Su said "Biomaterials-associated infection is one of the dominant causes of implant failure. Currently, antimicrobial biomaterials are largely reliant upon antibiotics and antimicrobial agents. However, a critical drawback is that they are transient. Over a period of time, the reservoir of leaching antimicrobial agent is limited and subject to depletion. Inspired by nanostructured surfaces found on insect wings, which kill bacteria through physical rupture of their cell walls, we hope to develop such novel antimicrobial surfaces that will be used for next-generation biomedical devices and implants."

Dr Avison is also Impact Lead for the BristolBridge consortium, which is funded by the Engineering and Physical Sciences Research Council to "Bridge the Gaps" between engineers and physical scientists and those with expertise in AMR., He added: The award of two AMR Innovation Grants to Bristol University further enhances our already extensive portfolio of AMR research. And thanks to BristolBridge-funded pump-priming projects, we look forward to seeing Bristol University academics develop more technological solutions to the threat of AMR in the future".

###

Media Contact

Simon Davies
[email protected]
44-117-928-8086
@BristolUni

http://www.bristol.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Teamwork and Competition on STEM Engagement

September 10, 2025

Transforming Postgraduate Nursing: Journal Club Insights

September 10, 2025

Unraveling Gene Expression Mechanisms in Glioblastoma

September 10, 2025

PLD4 Mutations Trigger Systemic Lupus Erythematosus

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Teamwork and Competition on STEM Engagement

Transforming Postgraduate Nursing: Journal Club Insights

Unraveling Gene Expression Mechanisms in Glioblastoma

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.