• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New immunotherapy technique can specifically target tumor cells, UCI study reports

Bioengineer by Bioengineer
November 6, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Irvine, Calif., Nov. 6, 2018 — A new immunotherapy screening prototype developed by University of California, Irvine researchers can quickly create individualized cancer treatments that will allow physicians to effectively target tumors without the side effects of standard cancer drugs.

UCI's Weian Zhao and Nobel laureate David Baltimore with Caltech led the research team that developed a tracking and screening system that identifies T cell receptors with 100-percent specificity for individual tumors within just a few days. Research findings appear in Lab on a Chip.

In the human immune system, T cells have molecules on their surfaces that bind to antigens on the surface of foreign or cancer cells. To treat a tumor with T cell therapy, researchers must identify exactly which receptor molecules work against a specific tumor's antigens. UCI researchers have sped up that identification process.

"This technology is particularly exciting because it dismantles major challenges in cancer treatments," said Zhao, an associate professor of pharmaceutical sciences who is affiliated with the Chao Family Comprehensive Center and the Sue & Bill Gross Stem Cell Research Center. "This use of droplet microfluidics screening significantly reduces the cost of making new cancer immunotherapies that are associated with less systemic side effects than standard chemotherapy drugs, and vastly speeds up the timeframe for treatment."

Zhao added that traditional cancer treatments have offered a one-size-fits-all disease response, such as chemotherapy drugs which can involve systemic and serious side effects.

T cell receptor (TCR)-engineered T cell therapy, a newer technology, harnesses the patient's own immune system to attack tumors. On the surface of cancer cells are antigens, protruding molecules that are recognized by the body's immune system T cells. This new therapy places engineered molecules on the patient's T cells which will bind to their cancer cell antigens, allowing the T cell to destroy the cancer cell. TCR therapy can be individualized, so each patient can have T cells designed specifically for their tumor cells.

This antigen-TCR recognition system is very specific – there can be hundreds of millions of different types of TCR molecules. A big challenge for TCR-T cell therapy development remains in identifying particular TCR molecules out of a pool of millions of possibilities. Finding a match can take up to a year (time many cancer patients don't have) and can cost half a million dollars or more per treatment.

By using miniscule oil-water droplets, Zhao's team designed a device that allows for individual T cells to join with cancer cells in microscopic fluid containers. The TCRs that bind with the cancer cells' antigens can be sorted and identified within days, considerably faster than the months or year that previous technologies required. The technology also significantly reduces the cost of making individualized TCRs and accelerates the pipeline of TCR-T cell therapy to clinic.

Through a partnership with Amberstone Biosciences, a UCI start-up, this entire platform and screening process will be available to pharmaceutical companies for drug development within just a few months. Not only can this technology help revolutionize TCR-T cell therapies for cancer, but it will also be a powerful tool for discovering other immunological agents, including antibodies and CAR-T cells, and for elucidating new immunology and cancer biology at a depth not possible before.

###

Aude I. Segaliny, Lingshun Kong, Ci Ren, and Xiaoming Chen of UCI contributed to this work, in addition to Guideng Li, Jessica K. Wang and Guikai Wu. This work was supported by UCI Applied Innovation, the Chao Family Comprehensive Cancer Center, the Sue & Bill Gross Stem Cell Research Center and the Department of Pharmaceutical Sciences. The work was funded by National Institutes of Health (grants 1DP2CA195763 and R21CA219225) and Amberstone Biosciences LLC: No. AB-208317.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

NOTE TO EDITORS: PHOTO AVAILABLE AT https://news.uci.edu/2018/11/06/new-immunotherapy-technique-can-specifically-target-tumor-cells-uci-study-reports/

Media Contact

Tom Vasich
[email protected]
949-824-6455
@UCIrvine

http://www.uci.edu

https://news.uci.edu/2018/11/06/new-immunotherapy-technique-can-specifically-target-tumor-cells-uci-study-reports/

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Childhood Trauma on Autistic Youth Health

October 31, 2025

Advancing Smoking Cessation Strategies for Individuals Living with HIV

October 30, 2025

Body Image and Spiritual Well-Being in Exercise Addiction

October 30, 2025

Cultural Conflicts Cause Distress for Dementia Caregivers

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.