• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New hybrid material improves the performance of silicon in Li-ion batteries

Bioengineer by Bioengineer
April 21, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Timo Ikonen

Researchers at the University of Eastern Finland have developed a new hybrid material of mesoporous silicon microparticles and carbon nanotubes that can improve the performance of silicon in Li-ion batteries. Advances in battery technology are essential for sustainable development and for achieving climate neutrality.

States and companies worldwide are eagerly looking for new and sustainable technologies to achieve climate neutrality in every sector of society, ranging from transportation and production of consumables to energy production. Once green energy is produced, it needs to be stored before it can be used in portable applications. In this step, battery technology plays an essential role in making the consumption of green energy a viable alternative.

In the future, silicon will gradually replace carbon as the anode material in Li-ion batteries (LIBs). This development is driven by the fact that the capacity of silicon is ten times higher than the capacity of graphite, which is nowadays used as the anode material in LIBs. Using silicon in the anode makes it possible to even double the capacity of the total battery cell. However, silicon is facing severe challenges in battery technology due to its unstable material properties. Moreover, there is no technology available so far to produce feasible anodes solely from silicon.

To minimise the reducing effect of high charging rates on the capacity of silicon anodes, researchers from the University of Eastern Finland have developed a hybrid material of mesoporous silicon (PSi) microparticles and carbon nanotubes (CNTs). According to the researchers, the hybrid material needs to be realised through chemical conjugation of PSi and CNTs with the right polarity so as to not hinder the diffusion of lithium ions into silicon. With the right type of conjugation, also the electrical conductivity and mechanical durability of the material was improved. Further, the PSi microparticles used in the hybrid material were produced from barley husk ash to minimise the carbon footprint of the anode material and to support its sustainability. Silicon was produced through a simple magnesiothermic reduction process applied to the phytoliths that are amorphous porous silica structures found in abundance in husk ash. The findings were published in Scientific Reports and Materials Chemistry and Physics.

Next, the researchers are aiming to produce a full silicon anode with a solid electrolyte to address the challenges related to the safety of LIBs and to the unstable solid electrolyte interface (SEI).

“The progress of the LIB research is very exciting, and we want to contribute to the field with our know-how related to mesoporous structures of silicon. Hopefully, the EU will invest more in the basic research of batteries to pave the wave for high performance batteries and to support the competitiveness of Europe in this field. The Battery 2030+ roadmap would be essential in supporting this progress,” Professor Vesa-Pekka Lehto from the University of Eastern Finland notes.

###

For further information, please contact:
Professor Vesa-Pekka Lehto, tel. +358 40 355 2470, [email protected]

Research articles:
Timo Ikonen, Nathiya Kalidas, Katja Lahtinen, Tommi Isoniemi, Jussi Toppari, Ester Vázquez, Antonia Herrero-Chamorro, José Luis Fierro, Tanja Kallio & Vesa-Pekka Lehto, Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Sci. Rep., 10:5589 (2020), DOI:10.1038/s41598-020-62564-0.

Nathiya Kalidas, Joakim Riikonen, Wujun Xu, Katja Lahtinen, Tanja Kallio & Vesa-Pekka Lehto, Cascading use of barley husk ash to produce silicon for composite anodes of Li-ion batteries. Mat. Chem. Phys., 245:122736 (2020), DOI:10.1016/j.matchemphys.2020.122736.

Media Contact
Vesa-Pekka Lehto
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-62564-0

Tags: Electrical Engineering/ElectronicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Periodontal Indicators Forecast Diabetes Glycemic Control

October 19, 2025
blank

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025

Early ASD Detection via Eye Tracking in Nurseries

October 19, 2025

Transformational Leadership’s Impact on Pakistani Nurses’ Creativity

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1263 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    294 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    125 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Periodontal Indicators Forecast Diabetes Glycemic Control

Continuous Electrocardiogram-Based Sex Index Unveiled

Early ASD Detection via Eye Tracking in Nurseries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.