• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New highly selective antitumor photodynamic therapy agents synthesized

Bioengineer by Bioengineer
April 17, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lobachevsky University

A team of researchers from Lobachevsky University (Nizhny Novgorod, Russia) headed by Professor Alexei Fedorov, Chair of the Organic Chemistry Department, is working to create a new generation of targeted anti-cancer drugs for photodynamic therapy.

Today, there are many different ways to fight cancer. However, due to a number of factors, scientists will have to go a long way to achieve the final "victory" in this struggle. The problem is that every case of cancer is unique in its own way and there is no single winning treatment strategy. Doctors can try to combine different therapies and observe the best response to their combination.

According to Alexei Fedorov, one of the widely used treatment methods is photodynamic therapy. "In this method, a special substance, a photosensitizer that is injected into the bloodstream or applied to the affected area of the skin, is used to destroy tumors. When this molecule is activated by light, a number of chain processes are initiated that result in the death of tumor cells", – Fedorov notes.

However, there are some problems associated with the application of this approach. Currently existing photosensitizer drugs, along with a number of serious advantages, have one significant drawback: the selectivity of their accumulation in tumor tissue is very low. In other words, when these drugs are administered to the patient, they are distributed almost evenly between healthy tissues and those affected by tumors. It is quite obvious that this balance should be shifted towards predominant accumulation in tumors. Current efforts of researchers in many countries are focused on achieving this goal.

To address this problem, the team of Prof. Fedorov used the concept of the "chemistry of conjugates", molecules consisting of several active parts. The researchers decided to combine the therapeutic properties of classical photosensitizers based on natural chlorophyll with highly selective molecules based on targeted drugs. The idea is simple enough: to synthesize two separate molecules with different but important properties, and then combine them to produce one molecule with a full set of properties. As a result of this approach, a significant improvement in the pharmacological parameters of new drugs was expected, due to the targeted portion of the molecule.

With the help of the scientists from the Research Institute of Chemistry of Macroheterocyclic Compounds (Ivanovo), the starting material was isolated to create the photosensitizer part of the conjugate from the Arthrospira blue-green algae. Based on this material, the targeted compounds were obtained at the Lobachevsky University.

Biological tests conducted on cell and animal models at the Lobachevsky University Biophysics Department have shown that the synthesized molecules accumulate tens of times more efficiently and faster than molecules containing only the photosensitizer part. The results of this work that were published in the European Journal of Medicinal Chemistry in January 2018 open up the possibilities for creating a new class of drugs for photodynamic therapy.

However, this was just the first stage of the project. After obtaining the initial positive results, a vast field opens for optimizing the structure of the molecule in order to reduce the toxicity of drugs and to increase their selective effect on tumor tissues.

Currently, work is under way to create the next generation of photosensitizer conjugates that will surpass their predecessors in most aspects. Later, preclinical trials are planned for the most effective new compounds.

###

Media Contact

Nikita Avralev
[email protected]

http://www.unn.ru/eng/

Share12Tweet8Share2ShareShareShare2

Related Posts

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025

ARFID hos förskolebarn: En screeningsstudie

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Liver Transplantation for Cancer with Genomics

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.