• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New gravitational-wave model can bring neutron stars into even sharper focus

Bioengineer by Bioengineer
May 21, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Birmingham

Gravitational-wave researchers at the University of Birmingham have developed a new model that promises to yield fresh insights into the structure and composition of neutron stars.

The model shows that vibrations, or oscillations, inside the stars can be directly measured from the gravitational-wave signal alone. This is because neutron stars will become deformed under the influence of tidal forces, causing them to oscillate at characteristic frequencies, and these encode unique information about the star in the gravitational-wave signal.

This makes asteroseismology — the study of stellar oscillations — with gravitational waves from colliding neutron stars a promising new tool to probe the elusive nature of extremely dense nuclear matter.

Neutron stars are the ultradense remnants of collapsed massive stars. They have been observed in the thousands in the electromagnetic spectrum and yet little is known about their nature. Unique information can be gleaned through measuring the gravitational waves emitted when two neutron stars meet and form a binary system. First predicted by Albert Einstein, these ripples in spacetime were first detected by the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) in 2015.

By utilising the gravitational wave signal to measure the oscillations of the neutron stars, researchers will be able to discover new insights into the interior of these stars. The study is published in Nature Communications.

Dr Geraint Pratten, of the University of Birmingham’s Gravitational Wave Institute, is lead author of the study. He explained: “As the two stars spiral around each other, their shapes become distorted by the gravitational force exerted by their companion. This becomes more and more pronounced and leaves a unique imprint in the gravitational wave signal.

“The tidal forces acting on the neutron stars excite oscillations inside the star giving us insight into their internal structure. By measuring these oscillations from the gravitational-wave signal, we can extract information about the fundamental nature and composition of these mysterious objects that would otherwise be inaccessible.”

The model developed by the team enables the frequency of these oscillations to be determined directly from gravitational-wave measurements for the first time. The researchers used their model on the first observed gravitational-wave signal from a binary neutron star merger – GW170817.

Co-lead author, Dr Patricia Schmidt, added: “Almost three years after the first gravitational-waves from a binary neutron star were observed, we are still finding new ways to extract more information about them from the signals. The more information we can gather by developing ever more sophisticated theoretical models, the closer we will get to revealing the true nature of neutron stars.”

Next generation gravitational wave observatories planned for the 2030s, will be capable of detecting far more binary neutron stars and observing them in much greater detail than is currently possible. The model produced by the Birmingham team will make a significant contribution to this science.

“The information from this initial event was limited as there was quite a lot of background noise that made the signal difficult to isolate,” says Dr Pratten. “With more sophisticated instruments we can measure the frequencies of these oscillations much more precisely and this should start to yield some really interesting insights.”

###

Notes to editor:

The University of Birmingham is ranked amongst the world’s top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.

Pratten et al (2020). ‘Gravitational-Wave Asteroseismology with Fundamental Modes from Compact Binary Inspirals’. Nature Communications.

Media Contact
R Lockwood
[email protected]

Tags: AstrophysicsSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Cardiomyopathies: MRI Insights from Experts

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Unraveling Causes and Solutions for Same-Day Surgery Cancellations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.