• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

New graphene-based device is first step toward ultrasensitive biosensors

Bioengineer by Bioengineer
March 7, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Device could detect disease biomarkers at the molecular level and lead to new sensor technology

Researchers in the University of Minnesota College of Science and Engineering have developed a unique new device using the wonder material graphene that provides the first step toward ultrasensitive biosensors to detect diseases at the molecular level with near perfect efficiency.

Ultrasensitive biosensors for probing protein structures could greatly improve the depth of diagnosis for a wide variety of diseases extending to both humans and animals. These include Alzheimer’s disease, Chronic Wasting Disease, and mad cow disease–disorders related to protein misfolding. Such biosensors could also lead to improved technologies for developing new pharmaceutical compounds.

The research is published in Nature Nanotechnology, a peer-reviewed scientific journal published by Nature Publishing Group.

“In order to detect and treat many diseases we need to detect protein molecules at very small amounts and understand their structure,” said Sang-Hyun Oh, University of Minnesota electrical and computer engineering professor and lead researcher on the study. “Currently, there are many technical challenges with that process. We hope that our device using graphene and a unique manufacturing process will provide the fundamental research that can help overcome those challenges.”

Graphene, a material made of a single layer of carbon atoms, was discovered more than a decade ago. It has enthralled researchers with its range of amazing properties that have found uses in many new applications, including creating better sensors for detecting diseases.

Significant attempts have been made to improve biosensors using graphene, but the challenge exists with its remarkable single atom thickness. This means it does not interact efficiently with light when shined through it. Light absorption and conversion to local electric fields is essential for detecting small amounts of molecules when diagnosing diseases. Previous research utilizing similar graphene nanostructures has only demonstrated a light absorption rate of less than 10 percent.

In this new study, University of Minnesota researchers combined graphene with nano-sized metal ribbons of gold. Using sticky tape and a high-tech nanofabrication technique developed at the University of Minnesota, called “template stripping,” researchers were able to create an ultra-flat base layer surface for the graphene.

They then used the energy of light to generate a sloshing motion of electrons in the graphene, called plasmons, which can be thought to be like ripples or waves spreading through a “sea” of electrons. Similarly, these waves can build in intensity to giant “tidal waves” of local electric fields based on the researchers’ clever design.

By shining light on the single-atom-thick graphene layer device, they were able to create a plasmon wave with unprecedented efficiency at a near-perfect 94 percent light absorption into “tidal waves” of electric field. When they inserted protein molecules between the graphene and metal ribbons, they were able to harness enough energy to view single layers of protein molecules.

“Our computer simulations showed that this novel approach would work, but we were still a little surprised when we achieved the 94 percent light absorption in real devices,” said Oh, who holds the Sanford P. Bordeau Chair in Electrical Engineering at the University of Minnesota. “Realizing an ideal from a computer simulation has so many challenges. Everything has to be so high quality and atomically flat. The fact that we could obtain such good agreement between theory and experiment was quite surprising and exciting.”

###

In addition to Oh, the research team included University of Minnesota electrical and computer engineering postdoctoral researchers In-Ho Lee (lead author) and Daehan Yoo, Professor Tony Low, and IBM Fellow Emeritus Dr. Phaedon Avouris.

This research was funded primarily by the National Science Foundation. The Institute for Mathematics and its Applications (IMA) at the University of Minnesota provided additional support. Device fabrication occurred at the Minnesota Nano Center at the University of Minnesota and electron microscopy measurements were performed at the University of Minnesota Characterization Facility.

To read the research paper entitled “Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy,” visit the Nature Nanotechnology website.

Media Contact
Rhonda Zurn
[email protected]

Related Journal Article

https://twin-cities.umn.edu/news-events/research-brief-new-graphene-based-device-first-step-toward-ultrasensitive-biosensors
http://dx.doi.org/10.1038/s41565-019-0363-8

Tags: Biomedical/Environmental/Chemical EngineeringComputer ScienceMolecular BiologyTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Diversity of Theileria Annulata in Northern India

CCNY Physicists Unveil Breakthrough Quantum Emitter in Diamonds

SwRI and Copeland Honored with R&D 100 Award for Pioneering Oil-Free Compressor Technology

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.