• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New genes discovered regulating brain metastases in lung cancer

Bioengineer by Bioengineer
August 8, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: McMaster University

Hamilton, ON (August 8, 2017) – Research from McMaster University has identified new regulators of brain metastases in patients with lung cancer.

These regulators are the genes called SPOCK1 and TWIST2.

The discovery was made by researchers at the Stem Cell and Cancer Research Institute at McMaster University and was recently published online in the journal Acta Neuropathologica.

"Brain metastases are a secondary brain tumour, which means they are caused by cancer cells that escape from primary tumours like lung, breast or melanoma, and travel to the brain," said Mohini Singh, the study's primary author and a PhD candidate in biochemistry at the Michael G. DeGroote School of Medicine at McMaster.

"We set out to find which genes can regulate the cells that initiate brain metastases, which we've termed brain metastasis initiating cells or BMICs. In other words, what are the genes that are sending the signal to these lung BMICs to leave the lung tumour, go into the blood stream, invade the blood-brain barrier and form a tumour in the brain."

The study used samples from lung cancer patients with brain metastases. The samples were incubated to enrich for BMICs, then injected into the lungs, hearts and brains of mice. The subsequent development of brain metastases was studied by researchers.

"If you look at a set of lung cancer patients, like we did in the paper, who develop brain metastases, they all have those two genes in their primary lung cancer," said Sheila Singh, the study's supervisor, associate professor at the Michael G. DeGroote School of Medicine, scientist with the Stem Cell and Cancer Research Institute at McMaster University and neurosurgeon at McMaster Children's Hospital.

"Patients who don't get brain metastases don't have these genes in their primary lung cancer."

Brain metastases are the most common brain tumour in adults and are a leading cause of death in cancer patients.

"If you can identify the genes that cause metastases, then you can determine a predictive model and you can work towards blocking those genes with possible treatments," said Mohini Singh.

###

The research was funded by the Department of Surgery at McMaster University, the Ontario Institute for Cancer Research Cancer Stem Cell Program, a Canadian Cancer Society Research Institute Innovation Grant, the Brain Canada Foundation and the Boris Family Fund for Brain Metastasis Research.

In addition to McMaster, additional authors on the study came from St. Joseph's Healthcare Hamilton, the University of Toronto, the Donnelly Centre, Princess Margaret Cancer Centre and the Hospital for Sick Children.

-30-

Editors: Photos of Mohini Singh are attached.

For more information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
[email protected]
905-525-9140, ext. 22169

Media Contact

Veronica McGuire
[email protected]
90-552-591-402-2169
@mcmasteru

Home

Share47Tweet7Share2ShareShareShare1

Related Posts

Evaluating the Effectiveness and Safety of GLP-1 Receptor Agonists in Youths with Obesity or Type 2 Diabetes

September 15, 2025
Stored Charges Power NiOOH-Catalyzed Water Oxidation

Stored Charges Power NiOOH-Catalyzed Water Oxidation

September 15, 2025

Influence of Country of Birth, Race, and Ethnicity on Prenatal Depression

September 15, 2025

Breakthroughs in Exciton-Polariton Research within Perovskite Materials

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Effectiveness and Safety of GLP-1 Receptor Agonists in Youths with Obesity or Type 2 Diabetes

Stored Charges Power NiOOH-Catalyzed Water Oxidation

Influence of Country of Birth, Race, and Ethnicity on Prenatal Depression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.