• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New gene catalog of ocean microbiome reveals surprises

Bioengineer by Bioengineer
August 17, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: HOT Program, UHM SOEST

Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor Ed DeLong and his team report the largest single-site microbiome gene catalog constructed to date. With this new information, the team discovered nutrient limitation is a central driver in the evolution of ocean microbe genomes.

As a group, marine microbes are extremely diverse and versatile with respect to their metabolic capabilities. All of this variability is encoded in their genes. Some marine microorganisms have genetic instructions that allow them to use the energy derived from sunlight to turn carbon dioxide into organic matter. Others use organic matter as a carbon and energy source and produce carbon dioxide as a respiration end-product. Other, more exotic pathways have also been discovered.

"But how do we characterize all these diverse traits and functions in virtually invisible organisms, whose numbers approach a million cells per teaspoon of seawater?" asked DeLong, senior author on the paper. "This newly constructed, comprehensive gene catalog of microbes inhabiting the ocean waters north of the Hawaiian Islands addresses this challenge."

Water samples were collected over two years, and modern genome sequencing technologies were used to decode the genes and genomes of the most abundant microbial species in the upper 3,000 feet of water at the Hawai'i Ocean Time-series (HOT) Program open ocean field site, Station ALOHA.

Just below the depth of sunlit layer, the team observed a sharp transition in the microbial communities present. They reported that the fundamental building blocks of microbes, their genomes and proteins, changed drastically between depths of about 250-650 feet.

"In surface waters, microbial genomes are much smaller, and their proteins contain less nitrogen–a logical adaptation in this nitrogen-starved environment," said Daniel Mende, post-doctoral researcher at the UHM School of Ocean and Earth Science and Technology (SOEST) and lead author on the paper. "In deeper waters, between 400-650 feet, microbial genomes become much larger, and their proteins contain more nitrogen, in tandem with increasing nitrogen availability with depth."

"These results suggest that the availability of nutrients in the environment may actually shape how microbial genomes and proteins evolve in the wild," said DeLong. "Another surprising finding of the study is that the microbial 'genomic transition zone' observed occurs over a very narrow depth range, just beneath the sunlit layer. Below about 650 feet deep, the fundamental properties of microbial genomes and proteins are relatively constant, all the way down to the seafloor."

In collaboration with a computer science group led by professor Bonnie Hurwitz at the University of Arizona, the new database is available to scientists worldwide who are seeking to describe the nature and function of microbes in the global oceans.

"These new data will provide an important tool for understanding the nature and function of the ocean's microbiome today, as well as help predict its trajectory into the future," said DeLong.

###

Media Contact

Marcie Grabowski
[email protected]
808-956-3151
@UHManoaNews

http://manoa.hawaii.edu

Related Journal Article

http://dx.doi.org/10.1038/s41564-017-0008-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Sheathed Flagellum Structures Explain Vibrio cholerae Motility

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025

Electrostatic Shifts Drive Exocyst Subunit Diversification

October 31, 2025

Breakthrough Study Reveals Innovative Method to Target Cell Receptors, Paving the Way for Expanded Treatment Options

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Research Uncovers the Role of Bacteria in Shaping Lake and Reservoir Health

Comparing Health Worker and Non-Worker Education on Contraception

Creating Human Kidney Organoids for Porcine Transplants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.