• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New function for potential tumor suppressor in brain development

Bioengineer by Bioengineer
January 10, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Analysis of Cdkn1c loss at single cell level reveals novel and unexpected role of gene — study published in Nature Communications

IMAGE

Credit: © IST Austria – Hippenmeyer group


The gene Cdkn1c could have been considered an open-and-shut case: Mice in which the gene is removed are larger and have bigger brains, so Cdkn1c should function to inhibit growth. This rationale has led to Cdkn1c being studied as a tumour suppressor gene. New research from the group of Simon Hippenmeyer, professor at the Institute of Science and Technology Austria (IST Austria), has now uncovered a novel, opposite role for Cdkn1c. When Cdkn1c is removed only in certain cells of the brain, these cells die, arguing for a new growth promoting role of Cdkn1c. The new research is published today in the journal Nature Communications.

Simon Hippenmeyer and his research group, including co-first authors Susanne Laukoter (PhD student), Robert Beattie (postdoc) and Florian Pauler (senior technical assistant), removed Cdkn1c in a brain region called the cerebral cortex in mice and found a surprising result: Contrary to what had previously been thought, the cortex was smaller, not bigger, than in animals with a normal amount of Cdkn1c. To make sense of this seeming paradox, the researchers compared the effect of Cdkn1c loss in the whole animal with a loss of the gene in just a single tissue or even in single cells in the developing mouse.

Studying brain development and gene function at single cell level with MADM

Using a genetic technique called Mosaic Analysis with Double Markers (MADM) allowed the researchers to knockout a gene of interest in single cells and at the same time, visualize the effect of gene deletion on these cells under the microscope. When they removed the gene Cdkn1c in cells in the whole cortex, the cortex was smaller. “When we take out the gene, cells die. In fact, we see massive death by apoptosis”, Hippenmeyer explains.

In a cortex where Cdkn1c was removed, the researchers further modified single cells with MADM to observe their fate. They found that if a cell has two intact copies of Cdkn1c, the cell is protected against death. If a cell has just one intact copy of Cdkn1c, the cell dies. Intriguingly, it does not matter whether the DNA, the “instruction manual” in our cells that defines how products like proteins are made, is active and thus allows generation of proteins, or not. Just having two copies of the intact DNA, the intact instruction manual, is enough to protect a cell from death.

Implications for studies on brain malformations and tumour development

For Hippenmeyer, this study underlines the importance of studying both systemic effects of gene loss (i.e. gene loss in the whole animal) and the effect of gene loss in individual cells. “Our method reveals a new function of Cdkn1c, as taking the gene out in a single cell has a fundamentally different effect from taking it out in the whole animal. Systemic effects may mask the effect observed in individual cells. It is important to also study this in human conditions that lead to malformations of the brain, such as microcephaly.”

As Cdkn1c and its role in the development of tumours has been studied extensively, the new research likely also has important implications for this field, says Florian Pauler. “There has been interest in Cdkn1c as it has been regarded as a tumour suppressor. Like the single cells and individual tissue we studied, tumours can also be seen as non-systemic. So, our findings change the way we should think about Cdkn1c, also in tumours.”

In the future, Hippenmeyer and his research group will continue to explore the mechanisms and functions of Cdkn1c. “When this piece of DNA is missing, something fundamental is changed and death is triggered in a cell. Of course, we want to now know why and how this happens”, Hippenmeyer asserts.

###

Media Contact
Kathrin Pauser
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-14077-2

Tags: BiologyGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gallbladder Removal Disrupts Gut Microbes, Fuels Tumors

Medical Staff Views on NAVA in Preterm Infants

Lip and Oral Cancer Trends in Seniors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.