• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New function discovered for ADAR1 in protecting stressed cells from apoptotic death

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA — (April 24, 2017) — The RNA editing protein ADAR1 was first discovered several decades ago. Now, scientists at The Wistar Institute have identified a new function for the protein: It stops cells that have been exposed to stressors such as ultraviolet (UV) radiation from dying. Study results were published recently in Nature Structural & Molecular Biology.

There are two forms of the ADAR1 protein, ADAR1p110 and ADAR1p150. Several biological functions for ADAR1p150 have been revealed, but little is known about the role of ADAR1p110 in vivo. The new research shows that ADAR1p110 regulates the response of cells to certain stressors, including UV radiation, by protecting them from dying as a result of a process called apoptosis, a form of programmed cell death.

"Before we started this work, we knew very little about the function of ADAR1p110 in vivo," said Kazuko Nishikura, Ph.D., professor in the Gene Expression and Regulation Program at The Wistar Institute and senior author of the study. "We knew that it could edit RNA, a polymeric molecule key for decoding the genetic material in a cell, but we did not know if this was important for its biological function."

"We were surprised to find that ADAR1p110 has an important biological role as a stress-response protein, and that this function is independent of its ability to edit RNA," she added.

To identify the functions of ADAR1p110, Nishikura and colleagues reasoned that the cellular location of the protein must be linked to its function. They found that when cells were exposed to stressors such as UV radiation, ADAR1p110 transiently moved from its normal location in the nucleoplasm and nucleoli of a cell into the cytoplasm.

The researchers then characterized the pathway controlling this change in cellular distribution, finding that it involved a protein called MAP kinase p38, which was already known to have a role in regulating death or survival of stressed cells.

Once in the cytoplasm, Nishikura and colleagues showed that ADAR1p110 protects a defined set of mRNAs from degradation. Many of these mRNAs decode genes involved in preventing apoptotic cell death, leading the researchers to conclude that ADAR1p110 protects cells from stress-induced apoptosis by protecting anti-apoptotic mRNAs from degradation.

"Now that we have a well-defined function for ADAR1p110, we can work to understand its role in postnatal development and disease, in a particular cancer," added Nishikura.

###

This work was supported by National Institutes of Health grants R01GM040536 and R01CA175058; the Macula Vision Research Foundation; and Japan Society for the Promotion of Science grants S13204 and JSPS 2010-22. Core support for The Wistar Institute was provided by the Cancer Center Support Grant P30CA010815. Co-authors of this study from The Wistar Institute are: Massayuki Sakurai, Yusuke Shiromoto, Hiromitsu Ota, Chunzi Song, Andrew V. Kossenkov, Jayamanna Wickramasinghe, Louise C. Showe, Emmanuel Skordalakes, Hsin-Yao Tang, and David W. Speicher.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact

Darien Sutton
[email protected]
215-870-2048
@TheWistar

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

September 13, 2025
blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.