• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New electron source for materials analysis

Bioengineer by Bioengineer
March 15, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How can solar cells be made more efficient? How can solar and wind energy be best stored for later use? Technologies for the transformation of the German energy sector (Energiewende) require tailor-made materials which are both affordable and efficient. One important tool in the search for such materials is high-resolution electron energy loss spectroscopy, HREELS for short. This method entails bombarding the material to be investigated with a beam of electrons. The electrons are deflected from the surface of the material and in doing so lose some of their energy. This loss of energy can be measured, thus permitting conclusions to be drawn about the properties of the material, such as its ability to conduct electricity or heat.

HREELS measurements can, however, be very time-consuming. "The really interesting part of the electrons' energy loss is angle-dependent," explains Dr. François Bocquet from Jülich's Peter Grünberg Institute. "This is why it must be measured from different directions. So far, it was only possible to measure the energy loss for one angle at a time. Measurements of a single sample thus took a whole day, and sometimes even longer."

Now, François Bocquet and his colleagues have developed a method for measuring a sample within just minutes. Two additional components in their HREELS instrument simplify the measurements: "The first is a hemispherical electron analyser, which has been successfully used in angle-resolved photoelectron spectroscopy for ten years," says Bocquet. "The second is a modified electron source adapted to the electron analyser, which was developed here at the institute." This is optimized by means of specially developed software which ensures that the electrons in the beam have the desired kinetic energy and can be focused on a very small area of the sample. In this way, the analyser can be used optimally – permitting the simultaneous measurement of energy losses from different angles.

"These innovations enable us to investigate samples which are too unstable or sensitive for the previous methods," explains François Bocquet, whose research is also funded by the Helmholtz Association's Initiative and Networking Fund. The scientists usually work under vacuum conditions so that the surfaces to be investigated are not contaminated. "Since, however, no vacuum is ever perfect, we would have to stop the measurements after a few hours and prepare the sample again. Thanks to the new method, this is now no longer necessary," says a delighted Bocquet.

###

Contact:

Dr. François C. Bocquet
Peter Grünberg Institute
Functional Nanostructures at Surfaces (PGI-3)
Tel: +49 2461 61-3987
Email: [email protected]

Press contact:

Dr. Regine Panknin
Corporate Communications
Tel: +49 2461 61-9054
Email: [email protected]

Media Contact

Dr. Regine Panknin
[email protected]
@fz_juelich

http://www.fz-juelich.de

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.