• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New disease model to facilitate development of ALS and MS therapies

Bioengineer by Bioengineer
April 16, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Karolinska Institutet in Sweden have developed a new disease model for neurodegenerative diseases such as ALS and MS that can be used to develop new immunotherapies. The model is described in a publication in the scientific journal Nature Immunology.

All of the body's organs contain macrophages, which, as part of the immune system, consume bacteria and other foreign bodies. However, macrophages are also specialised according to the organ in which they operate; in the brain they are known as microglia, and researchers believe that this specialisation is controlled by the cytokine TGF-β, which is a kind of protein.

In a healthy brain, microglia are involved in interneuronal communication and the renewal of myelin, the insulating sheaths enveloping axons of nerve cells that enable the transmission of nerve impulses. In diseases like MS and ALS, other immune cells called monocytes can enter the brain via the blood, be transformed into inflammatory cells and cause damage to the neurons and the myelin sheath.

The researchers behind the current study had a hypothesis that TGF-β may program monocytes from being inflammatory cells to becoming microglia-like cells.

"We already knew that TGF-β is produced in the brain and is important for giving microglia their specialised functions," says first author Harald Lund, doctoral student at the Department of Clinical Neuroscience, Karolinska Institutet. "So we figured that monocytes should also respond to TGF-β when they enter the brain. We were curious to see what would happen if the monocytes lost the ability to respond to TGF-β."

To test this, the researchers first used a mouse model in which the animal's own microglia could be removed. This lead to a rapid influx of monocytes into the brain and spinal cord, which gave rise to new microglia-like cells, and the mice displayed no pathological symptoms. But when the researchers then switched off the TGF-β receptors on the new microglia-like cells, they started to consume large parts of the myelin in the spinal cord. The mice quickly developed a deadly neurodegenerative disease, the symptoms of which were similar to those of ALS.

The disease model can explain a mechanism that is active in neuroinflammatory and neurodegenerative diseases, and could be used to develop and test new immunotherapies. Today there are no effective treatments.

"There are many deadly neurodegenerative diseases in humans, but a lack of experimental models for developing new immunotherapies," says Professor Bob Harris at the Centre for Molecular Medicine, Karolinska University Hospital and the Department of Clinical Neuroscience, Karolinska Institutet. "This new disease model will be a valuable addition to our research programme and we hope that the next study will result in a new, effective therapy."

###

The study was financed by the Swedish Alzheimer's Foundation, the Swedish Research Council, the Swedish Childhood Cancer Foundation, the Åke Wiberg Foundation, the Swedish MS Research Foundation, the NIH-NINDS, NIH-NIA, the National Multiple Sclerosis Society, the Amyotrophic Lateral Sclerosis Association, the Swedish Heart and Lung Foundation, the Novo Nordisk Foundation and the Margaretha af Ugglas Foundation.

Publication: "Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-β signaling". Lund H, Pieber M, Parsa R, Grommisch D, Ewing E, Kular L, Han J, Zhu K, Nijssen J, Hedlund E, Needhamsen M, Ruhrmann S, Ortlieb Guerreiro Cacais A, Berglund R, Forteza MJ, Ketelhuth DFJ, Butovsky O, Jagodic M, Zhang X-M, Harris RA. Nature Immunology, online 16 April 2018, doi: 10.1038/s41590-018-0091-5.

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

http://dx.doi.org/10.1038/s41590-018-0091-5

Related Journal Article

http://dx.doi.org/10.1038/s41590-018-0091-5

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Microhaplotype Panel Advances Brazilian Human Identification

August 22, 2025
blank

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

August 22, 2025

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

August 22, 2025

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microhaplotype Panel Advances Brazilian Human Identification

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.