• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New discovery opens for breakthrough in laser technology

Bioengineer by Bioengineer
October 13, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Aarhus University has received a grant from the Independent Research Fund Denmark to investigate nonlinear effects in semiconductor lasers — a stepping-stone to enable next generation higher-order modulation in fiber optic networks

IMAGE

Credit: Melissa Yildirim, AU Foto

The Department of Engineering, Aarhus University, has received a grant from the Independent Research Fund Denmark to investigate nonlinear effects in semiconductor lasers – a stepping-stone to enable next generation higher-order modulation in fibre optic networks.

One of the properties of lasers is the reduced spectral distribution of their optical emission as compared to other light sources.

However, this laser ‘linewidth’ can be greatly influenced by the environmental conditions, which deteriorate their performance when used outside the research lab.

Now, Assistant Professor Nicolas Volet, who leads the Integrated Photonics group at Aarhus University (AU) has received a DKK 2.9 million grant from the Independent Research Fund Denmark for a new ambitious project, that aims at solving the linewidth issue of diode lasers.

This issue is known to be one of the limitations in the deployment of coherent higher-order modulation transceivers for emerging applications; for instance, 5G wireless.

This project is based on a recent breakthrough discovery made by Assistant Professor Nicolas Volet and Dr. Holger Klein, Director of Chip Design at the US-based company OE Solutions America, Inc (OESA):

“We have discovered a method to effectively narrow the linewidth of a laser by a factor of up to 500, which is required to enable higher-order modulation formats in coherent communication, where information is encoded in the phase, amplitude and polarization of the lightwave signal. This unique approach can reduce the cost, size and power consumption compared to today’s laser technology,” says Dr. Holger Klein.

Nicolas Volet continues:

“Indeed, this discovery is extremely encouraging as it is expected to turn a notorious limitation of semiconductor lasers into an opportunity to increase optical network transport capacity and simplify their packaging for real-world applications. Our group will work closely with OESA’s Photonic Integrated Circuit (PIC) design team in Santa Barbara, CA led by Dr. Klein to study and further improve this new breakthrough technology.”

If successful, the project encompasses a brand-new laser technology, that has the potential to simplify modern communications technology and make it much smaller, cheaper and a lot more energy-efficient – a pivotal change, since lasers are fundamental for modern communication and instrumentation:

“We are pleased to partner with Professor Volet and Aarhus University on this significant work which could lead to a breakthrough in coherent optical communication for future generation optical networks,” says Dr. Holger Klein.

###

Media Contact
Assistant Professor Nicolas Volet
[email protected]

Tags: Computer ScienceElectrical Engineering/ElectronicsGrants/FundingHardwareInternetMultimedia/Networking/Interface DesignOpticsResearch/DevelopmentTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
blank

Birds Flourish Despite Pollution from Persistent ‘Forever’ Chemicals

October 8, 2025

Rice University Unveils Second Cohort of Chevron Energy Graduate Fellows

October 7, 2025

Covalent Organic Frameworks: Building Infinite Metal–Organic Structures

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1060 shares
    Share 424 Tweet 265
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exercise Boosts Stroke Recovery via IL-10 Pathway

Remote Sensing Boosts Green Roof Vegetation Health

Stress Exposure Links to Depression in Pancreatic Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.