• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New discovery may lead to the development of super premium gasoline

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Illinois

In contradicting a theory that's been the standard for over eighty years, researchers at the University of Illinois at Urbana-Champaign have made a discovery holding major promise for the petroleum industry. The research has revealed that in the foreseeable future products such as crude oil and gasoline could be transported across country 30 times faster, and the several minutes it takes to fill a tank of gas could be reduced to mere seconds.

Over the past year, using high flux neutron sources at the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL), an Illinois group led by Yang Zhang, assistant professor of nuclear, plasma, and radiological engineering (NPRE) and Beckman Institute at Illinois, has been able to videotape the molecular movement of alkanes, the major component of petroleum and natural gas. The group has learned that the thickness of liquid alkanes can be significantly reduced, allowing for a marked increase in the substance's rate of flow.

"Alkane is basically a chain of carbon atoms," Zhang said. "By changing one carbon atom in the backbone of an alkane molecule, we can make it flow 30 times faster."

The group's discovery disproves a well-known theory that Princeton University professors Walter Kauzmann and Henry Eyring formed in the late 1940s. They had predicted that all alkanes have a universal viscosity near their melting points. Zhang said the theory had been cited over 3,000 times.

However, a rather distinct odd-even effect of the liquid alkane dynamics was discovered. The odd-even effect in solid alkanes is taught in almost every introductory organic chemistry textbook, i.e., the difference in the periodic packing of odd- and even-numbered alkane solids results in odd-even variation of their densities and melting points. However, the same effect was not expected in liquid alkanes because of the lack of periodic structures in liquids.

"The classical Kauzmann-Eyring theory of molecular viscous flow is over simplified," Zhang said. "It seems some chemistry textbooks may need revisions."

The Illinois scientists had the technological advantage of super high-speed (at the pico-second, 1 trillionth of a second) and super high-resolution (at the nano-meter, 1 billionth of a meter) "video cameras" making use of neutrons to take movies of the molecules. "A neutron 'microscope' is the major breakthrough in materials research and we use it to look at everything. There are things we've never seen before," Zhang said.

The research, "Dynamic Odd-Even Effect in Liquid n-Alkanes near Their Melting Points," has been published in the German publication Angewandte Chemie International Edition. The reported research discovery is fundamental to understand and improve a wide spectrum of chemical processes, such as lubrication, diffusion through porous media, and heat transfer.

###

Zhang conducted the research after being selected in fall 2015 for an American Chemical Society Petroleum Research Fund Doctoral New Investigator Award. The first author of the paper, Ke Yang, graduated in summer 2016 and now works at the Dow Chemical Company. Other collaborators include NPRE graduate students Zhikun Cai, and Abhishek Jaiswal, Dr. Madhusudan Tyagi at NIST, and Jeffrey S. Moore, interim director of the Beckman Institute and HHMI Professor of Chemistry at Illinois.

Media Contact

Yang Zhang
[email protected]
217-300-0452
@EngineeringAtIL

http://engineering.illinois.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Aortic Valve Guides Umbilical Artery Catheter Placement

August 26, 2025

Improved Stroke Outcomes for Older Patients in Collaborative Care

August 26, 2025

Identifying Late-Onset Sepsis Markers in Pediatric ICU

August 26, 2025

Common Painkillers Found to Promote Antibiotic Resistance

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aortic Valve Guides Umbilical Artery Catheter Placement

Improved Stroke Outcomes for Older Patients in Collaborative Care

Identifying Late-Onset Sepsis Markers in Pediatric ICU

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.