• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New discovery could reverse tissue damage caused by heart attacks

Bioengineer by Bioengineer
July 25, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new discovery by University of Bristol scientists helps to explain how cells which surround blood vessels, called pericytes, stimulate new blood vessels to grow with the hormone 'leptin' playing a key role. Leptin is produced by fat cells which helps to regulate energy balance in the body by inhibiting the appetite. This study, described in Scientific Reports, may have important implications for the treatment of heart attacks and also for cancer, the two main killers in the UK.

The growth of new blood vessels, called 'angiogenesis', is an important process occurring both in health and disease. It is involved in the repair of tissues following injury but also has an essential role in the growth and spread of cancer.

The Heart Research UK-funded project studied how pericytes encourage the growth of new blood vessels and the role of leptin, and provides important new information about the mechanisms involved.

One of the current treatments for heart attack is coronary artery bypass surgery. This uses blood vessels from the leg, or elsewhere in the body, to bypass the blocked artery and improve blood flow to the heart muscle. This is invasive and major surgery, with a long recovery time. In the longer term, these findings may help in the development of an alternative treatment to major surgery for heart attack patients.

Importantly, the team found that pericytes produced 40-times more leptin when exposed to low levels of oxygen and that this continued until oxygen levels returned to normal. This may help tissues to build more blood vessels to increase blood flow and oxygen supply. Together with other findings, the research shows that leptin has several important actions which encourage new blood vessel growth in areas where tissues are deprived of oxygen.

In most cases, a heart attack is when a coronary artery becomes blocked and the resulting lack of blood supply to the heart muscle can lead to a damaged heart. Professor Madeddu's team has shown that by stimulating the growth of new blood vessels, pericytes have the potential to restore blood supply to damaged heart muscle after a heart attack.

Paolo Madeddu, Professor of Experimental Cardiovascular Medicine from the School of Clinical Sciences, who leads the project at the Bristol Heart Institute, said: "This new discovery could have important implications for the treatment of heart attacks, which is when a main coronary artery gets blocked, but also cancer. These results reveal a new signalling mechanism that may have a far-reaching and significant impact on cardiovascular regenerative medicine.

"Increasing leptin in pericytes in a damaged heart might help it to heal faster, whereas blocking the production of leptin in cancerous pericytes might starve the tumour of nutrients and force it to shrink."

Barbara Harpham, Chief Executive of Heart Research UK, added: "This translational research project is a good example of research that aims to benefit patients as soon as possible. Professor Madeddu and the team have made some important new discoveries. Understanding more about the processes involved may help pave the way for the development of new treatments for heart attacks which could replace coronary bypass operations."

Paper: 'The adipokine leptin modulates adventitial pericyte functions by autocrine and paracrine signalling' by Paolo Madeddu et al in Scientific Reports

###

Media Contact

Joanne Fryer
[email protected]
44-011-739-40227
@BristolUni

http://www.bristol.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Reveals Critical Opportunities to Enhance Singapore’s Children’s Mental Health Ecosystem

October 28, 2025

Enhancing Eating Disorder Care: Insights and Innovations

October 28, 2025

Enhancing Nursing Handover in Kenyan Newborn Units

October 28, 2025

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34
div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Critical Opportunities to Enhance Singapore’s Children’s Mental Health Ecosystem

Enhancing Eating Disorder Care: Insights and Innovations

Enhancing Nursing Handover in Kenyan Newborn Units

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.