• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New design for ‘optical ruler’ could revolutionize clocks, telescopes, telecommunications

Bioengineer by Bioengineer
June 22, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NIST

Just as a meter stick with hundreds of tick marks can be used to measure distances with great precision, a device known as a laser frequency comb, with its hundreds of evenly spaced, sharply defined frequencies, can be used to measure the colors of light waves with great precision.

Small enough to fit on a chip, miniature versions of these combs — so named because their set of uniformly spaced frequencies resembles the teeth of a comb — are making possible a new generation of atomic clocks, a great increase in the number of signals traveling through optical fibers, and the ability to discern tiny frequency shifts in starlight that hint at the presence of unseen planets. The newest version of these chip-based “microcombs,” created by researchers at the National Institute of Standards and Technology (NIST) and the University of California at Santa Barbara (UCSB), is poised to further advance time and frequency measurements by improving and extending the capabilities of these tiny devices.

At the heart of these frequency microcombs lies an optical microresonator, a ring-shaped device about the width of a human hair in which light from an external laser races around thousands of times until it builds up high intensity. Microcombs, often made of glass or silicon nitride, typically require an amplifier for the external laser light, which can make the comb complex, cumbersome and costly to produce.

The NIST scientists and their UCSB collaborators have demonstrated that microcombs created from the semiconductor aluminum gallium arsenide have two essential properties that make them especially promising. The new combs operate at such low power that they do not need an amplifier, and they can be manipulated to produce an extraordinarily steady set of frequencies — exactly what is needed to use the microchip comb as a sensitive tool for measuring frequencies with extraordinary precision. (The research is part of the NIST on a Chip program.)

The newly developed microcomb technology can help enable engineers and scientists to make precision optical frequency measurements outside the laboratory, said NIST scientist Gregory Moille. In addition, the microcomb can be mass-produced through nanofabrication techniques similar to the ones already used to manufacture microelectronics.

The researchers at UCSB led earlier efforts in examining microresonators composed of aluminum gallium arsenide. The frequency combs made from these microresonators require only one-hundredth the power of devices fabricated from other materials. However, the scientists had been unable to demonstrate a key property — that a discrete set of unwavering, or highly stable, frequencies could be generated from a microresonator made of this semiconductor.

The NIST team tackled the problem by placing the microresonator within a customized cryogenic apparatus that allowed the researchers to probe the device at temperatures as low as 4 degrees above absolute zero. The low-temperature experiment revealed that the interaction between the heat generated by the laser light and the light circulating in the microresonator was the one and only obstacle preventing the device from generating the highly stable frequencies needed for successful operation.

At low temperatures, the team demonstrated that it could reach the so-called soliton regime — where individual pulses of light that never change their shape, frequency or speed circulate within the microresonator. The researchers describe their work in the June issue of Laser and Photonics Reviews.

With such solitons, all teeth of the frequency comb are in phase with each other, so that they can be used as a ruler to measure the frequencies employed in optical clocks, frequency synthesis, or laser-based distance measurements.

Although some recently developed cryogenic systems are small enough that they could be used with the new microcomb outside the laboratory, the ultimate goal is to operate the device at room temperature. The new findings show that scientists will either have to quench or entirely avoid excess heating to achieve room-temperature operation.

###

Media Contact
Ben P. Stein
[email protected]

Original Source

https://www.nist.gov/news-events/news/2020/06/comb-chip-new-design-optical-ruler-could-revolutionize-clocks-telescopes

Related Journal Article

http://dx.doi.org/10.1002/lpor.202000022

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesOpticsSuperconductors/SemiconductorsTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
blank

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025

New Study Reveals How Diatoms Thrive and Illuminate the Southern Ocean

August 4, 2025

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Best Tooth and Stage for Dental Age Estimation

Genetic Insights into Echinococcus from Greece and Neighbors

ASTM vs. In-Line Microplastic Sampling in Water

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.