• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New deep learning model is ‘game changer’ for measuring embryo development

Bioengineer by Bioengineer
May 29, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research led by the University of Plymouth has shown that a new deep learning AI model can identify what happens and when during embryonic development, from video.

Pond snail embryos at the University of Plymouth

Credit: University of Plymouth

Research led by the University of Plymouth has shown that a new deep learning AI model can identify what happens and when during embryonic development, from video.

Published today (Wednesday 29 May) in the Journal of Experimental Biology, the study highlights how the model, known as Dev-ResNet, can identify the occurrence of key functional developmental events in pond snails, including heart function, crawling, hatching and even death.

A key innovation in this study is the use of a 3D model that uses changes occurring between frames of the video, and enables the AI to learn from these features, as opposed to the more traditional use of still images.

The use of video means features ranging from the first heartbeat, or crawling behaviour, through to shell formation or hatching are reliably detected by Dev-ResNet, and has revealed sensitivities of different features to temperature not previously known.

While used in pond snail embryos for this study, the authors say the model has broad applicability across all species, and they provide comprehensive scripts and documentation for applying Dev-ResNet in different biological systems.

In future, the technique could be used to help accelerate understanding on how climate change, and other external factors, affect humans and animals.

The work was led by PhD candidate, Ziad Ibbini, who studied BSc Conservation Biology at the University, before taking a year out to upskill himself in software development, then beginning his PhD. He designed, trained and tested Dev-ResNet himself.

He said: “Delineating developmental events – or working out what happens when in an animal’s early development – is so challenging, but incredibly important as it helps us to understand changes in event timing between species and environments.

“Dev-ResNet is a small and efficient 3D convolutional neural network capable of detecting developmental events using videos, and can be trained relatively easily on consumer hardware.

“The only real limitations are in creating the data to train the deep learning model – we know it works, you just need to give it the right training data.

“We want to equip the wider scientific community with the tools that will enable them to better understand how a species’ development is affected by different factors, and thus identifying how we can protect them. We think that Dev-ResNet is a significant step in that direction.”

Dr Oli Tills, the paper’s senior author and a UKRI Future Leaders Research Fellow, added: “This research is important on a technological level, but it is also significant for advancing how we perceive organismal development – something that the University of Plymouth, within the Ecophysiology and Development research Group, has more than 20 years’ history of researching.

“This milestone would not have been possible without deep learning, and it is exciting to think of where this new capability will lead us in the study of animals during their most dynamic period of life.”

The full paper, entitled Dev-ResNet: Automated developmental event detection using deep learning, is now available to view in the Journal of Experimental Biology (doi: 10.1242/jeb.247046).



Journal

Journal of Experimental Biology

DOI

10.1242/jeb.247046

Method of Research

Computational simulation/modeling

Subject of Research

Animals

Article Title

Dev-ResNet: Automated developmental event detection using deep learning

Article Publication Date

29-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

August 27, 2025
Innovative Nonsurgical Approach Offers New Hope for Treating Pelvic Organ Prolapse

Innovative Nonsurgical Approach Offers New Hope for Treating Pelvic Organ Prolapse

August 27, 2025

Unraveling Aedes albopictus Genetics in Southeast Brazil

August 27, 2025

Madagascar’s Lemurs: Exploring Diversity Born from Repeated Evolutionary Surges

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weight Bias in Pediatric Care: A Closer Look

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

Transforming Addiction: The Role of Designer Proteins in Rewiring Neural Pathways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.