• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New Cretaceous Jehol fossil sheds light on evolution of ancestral mammalian middle ear

Bioengineer by Bioengineer
August 27, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IVPP

A joint research team led by Dr. MAO Fangyuan from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences and Prof. MENG Jin from the American Museum of Natural History has reported a new multituberculate mammal, Sinobaatar pani, with well-preserved middle ear bones.

The new mammal comes from the Early Cretaceous Jehol Biota in Northeast China. Comparing three types of fossils with extant mammals at different embryological stages, the researchers identified various evolutionary stages and ancestral phenotypes of the mammalian middle ear.

Their findings were published in National Science Review on Aug. 25.

For mammals, the external ear (the pinna) collects airborne sounds that vibrate the eardrums, and the middle ear bones on the inner side of the eardrum function as a delivery system that transmits sound vibrations to the inner ear.

According to previous studies, we know that the extra mammalian ear bones actually originated from the jawbones of reptiles. However, few studies have actually looked at the detailed morphologies of ear bones that are the ancestral phenotypes for the middle ear of modern mammals.

Multituberculates are an extinct group of mammals that lived from the Middle Jurassic (about 165 million years ago) to the Eocene (about 35 million years ago). The most exciting discovery about the new animal is its middle ear bones, which are the first unequivocal evidence of the five auditory bones from this extinct mammalian group.

These miniscule bones are still embedded in rock and not visible. Using computerized tomography (CT), MAO and her colleagues were able to digitally “extract” the ear bones from the rock and reconstruct them in three-dimensional form so that their morphology could be observed in detail.

The data provided by MAO and her colleagues are by far the best evidence of middle ear morphology in known Mesozoic mammals. For comparison, the data also included similar CT reconstructions of the middle ear of extant monotremes, marsupials and placentals.

“There are two basic patterns of the middle ear in living mammals, represented by monotremes and therians, respectively. In the former, the middle ear is characterized by an ‘abutting contact’ between the incus and malleus, which is distinct from the one in therian mammals where the incus-malleus articulation is saddle-shaped,” said Dr. MAO.

The researchers recognized that the three main Mesozoic mammalian groups (i.e., multituberculates, eutriconodontans, and symmetrodontans) share a similar middle ear structure between the incus and malleus, which they termed the “braced hinge joint”.

Although they acknowledged that the middle ear may have evolved independently in several mammalian groups, they proposed that the braced hinge joint could represent a critical feature of the ancestral phenotype of the mammalian middle ear.

The abutting pattern in monotremes and the saddle-shaped joint in therians may well be derived from the braced hinge joint linking the incus and malleus as observed in Mesozoic mammals. At the least, these fossil forms have narrowed the morphological gap between the middle ear of mammal-like reptiles, formed by the postdentary bones lodged in the lower jaw, to the middle ear of extant mammals.

The researchers proposed that the surangular bone, which is another postdentary bone in mammal-like reptiles, persisted in Mesozoic mammals; its fate in living mammals remains uncertain.

They further showed that middle ear morphologies in Mesozoic mammals represent different evolutionary stages, with that of Liaocodondon being the most primitive, Origolestes the intermediate, and Sinobaatar the most advanced.

Developmental features observed in extant mammals and evolution of the mammalian middle ear in fossil records are correlated, said MAO.

###

Media Contact
MAO Fangyuan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa188

Tags: ArchaeologyEvolutionOld World
Share12Tweet8Share2ShareShareShare2

Related Posts

BBX Gene Family Boosts Anthocyanin in Eggplant

BBX Gene Family Boosts Anthocyanin in Eggplant

December 19, 2025
Lactylation Insights Reveal Fat Deposit Regulation in Pigs

Lactylation Insights Reveal Fat Deposit Regulation in Pigs

December 18, 2025

Lanthipeptides Linked to Genetic Exchange in Prokaryotes

December 18, 2025

Comparing LEGU-1 and LGMN Interactions with Proton Pump Inhibitors

December 18, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Context and Experience on Nurses’ Medications

Measles Vaccine Uptake in Young Children in Ethiopia

Exploring Digitalization in German Palliative Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.