• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New cosmological constraints on the nature of dark matter

Bioengineer by Bioengineer
September 7, 2023
in Chemistry
Reading Time: 2 mins read
0
Dark matter fluctuations in the lens system MG J0414+0534
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research has revealed the distribution of dark matter in never before seen detail, down to a scale of 30,000 light-years. The observed distribution fluctuations provide better constraints on the nature of dark matter. 

Dark matter fluctuations in the lens system MG J0414+0534

Credit: ALMA(ESO/NAOJ/NRAO), K. T. Inoue et al.

New research has revealed the distribution of dark matter in never before seen detail, down to a scale of 30,000 light-years. The observed distribution fluctuations provide better constraints on the nature of dark matter. 

 

Mysterious dark matter accounts for most of the matter in the Universe. Dark matter is invisible and makes itself know only through its gravitational effects. Dark matter has never been isolated in a laboratory, so researchers must rely on “natural experiments” to study it.  

 

One type of natural experiment is a gravitational lens. Sometimes by random chance, two objects at different distances in the Universe will lie along the same line-of-sight when seen from Earth. When this happens, the spatial curvature caused by the matter around the foreground object acts like a lens, bending the path of light from the background object and making a lensed image. However, it is difficult to achieve the high resolution to detect clumps of dark matter which are less massive than galaxies in natural experiments, so the exact nature of dark matter has been poorly constrained. 

 

A team of Japanese researchers led by Professor Kaiki Taro Inoue at Kindai University used ALMA (Atacama Large Millimeter/submillimeter Array) to study the gravitational lens system known as MG J0414+0534 in the direction of the constellation Taurus. In this system, the foreground object forms not one, but four images of the background object due to the gravitational force of a massive galaxy acting on the light. With the help of the bending effect and their new data analysis method, the team was able to detect fluctuations in the dark matter distribution along the line-of-sight in higher resolution than ever before, down to a scale of 30,000 light-years. 

 

The new constraints provided by the observed distribution are consistent with models for slow moving, or “cold,” dark matter particles. 

 

In the future the team plans to further constrain the nature of dark matter with additional observations. 



Journal

The Astrophysical Journal

DOI

10.3847/1538-4357/aceb5f

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

ALMA Measurement of 10 kpc-scale Lensing Power Spectra towards the Lensed Quasar MG J0414+0534

Article Publication Date

7-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating a Pilot Program for Nurse Specialists

Toxicity Study of Minquartia Guianensis Leaf Extract

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.