• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New compound effective against drug-resistant pathogens, could lead to new antibiotics

Bioengineer by Bioengineer
May 30, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from North Carolina State University have synthesized an analog of lipoxazolidinone A, a small molecule that is effective against drug-resistant bacteria such as MRSA. This molecule, a new synthetic compound inspired by a natural product, could be a useful chemical tool for studying other Gram-positive infections and may have implications for future drug creation.

Lipoxazolidinone A is a natural product which had been previously isolated from bacteria living in marine sediments. It is a secondary metabolite – a small molecule produced by the bacteria that isn't key to its survival but is produced for a secondary purpose, like defense. When lipoxazolidinone A was initially isolated, researchers noted that it seemed effective against Gram-positive bacteria, like MRSA.

NC State chemist Joshua Pierce aimed to confirm those original findings and understand how the molecule's structure correlated to its function; in short, he wanted to recreate the molecule to see what portions were directly responsible for its anti-microbial properties and then potentially improve upon that structure.

Pierce, along with current NC State graduate student Kaylib Robinson and former students Jonathan Mills and Troy Zehnder, used novel chemical tools to synthesize lipoxazolidinone A in the lab. They were able to confirm that its chemical structure matched what the initial researchers had indicated, then they worked to identify the portion of the molecule that was responsible for the activity against Gram-positive bacteria. Their result was a compound with improved potency, JJM-35.

They tested JJM-35 against a panel of resistant and non-resistant bacteria. When tested against MRSA in-vitro, they found that the synthesized molecule was up to 50 times more effective than the natural product against several bacterial strains. Additionally, they found that the molecule was often more effective against resistant bacterial strains than it was against nonresistant strains.

"An exciting additional aspect of this work was that we identified that these molecules may function by inhibiting multiple biosynthetic pathways directly or indirectly," says Pierce. "This means that bacteria may have difficulty developing resistance to potential drugs developed from these molecules."

While more work is needed, Pierce hopes that JJM-35 and similar compounds can be used as tools to study other Gram-positive bacteria and provide a platform for the development of a novel class of anti-infective agents.

"At this point, we have a chemical scaffold – a starting piece of the puzzle. We know that this piece is effective, and so right now all efforts are focused on evaluating the properties of these molecules and their in-vivo efficacy," says Pierce. "The hope is that we can build upon this scaffold to create drugs that are effective against MRSA and other resistant bacteria at a time of dire need for antimicrobial development while also increasing the spectrum of activity."

The research appears in the journal Angewandte Chemie. The work has received funding from the National Institutes of Health (NIGMS grant R01GM110154) and NC State's Chancellor's Innovation Fund as well as support from the Comparative Medicine Institute at NC State.

###

Note to editors: An abstract of the paper follows

"Synthesis and Biological Evaluation of the Antimicrobial Natural Product Lipoxazolidinone A"

DOI: 10.1002/anie.201805078

Authors: Jonathan J. Mills, Kaylib R. Robinson, Troy E. Zehnder and Joshua G. Pierce, North Carolina State University

Published: Angewandte Chemie International Edition

Abstract: Natural products have historically been a major source of antibiotics and therefore novel scaffolds are constantly of interest. The lipoxazolidinone family of marine natural products, with an unusual 4-oxazolidinone heterocycle at their core, represents a new scaffold for antimicrobial discovery; however, questions regarding their mechanism of action and high lipophilicity have likely slowed follow-up studies. Herein, we report the first synthesis of lipoxazolidinone A, 15 structural analogs to explore its active pharmacophore, and initial resistance and mechanism of action studies. These results suggest that 4-oxazolidinones are valuable scaffolds for antimicrobial development and reveal simplified lead compounds for further optimization.

Media Contact

Tracey Peake
[email protected]
919-515-6142
@NCStateNews

Why Not Us?

https://news.ncsu.edu/2018/05/pierce-compound/

Related Journal Article

http://dx.doi.org/10.1002/anie.201805078

Share12Tweet7Share2ShareShareShare1

Related Posts

Gender Disparities in OSA: Endocrine, Metabolic, Psychological Effects

September 7, 2025

LPS-TLR4 Axis: Gut Dysbiosis and Heart Failure Insights

September 7, 2025

Memantine Alleviates Methamphetamine Memory Deficits in Rats

September 7, 2025

EDE-Q7: Evaluación de Trastornos Alimentarios en Adultos

September 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender Disparities in OSA: Endocrine, Metabolic, Psychological Effects

LPS-TLR4 Axis: Gut Dysbiosis and Heart Failure Insights

Memantine Alleviates Methamphetamine Memory Deficits in Rats

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.