• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New combination therapy of registered drugs shortens anti-Wolbachia therapy

Bioengineer by Bioengineer
October 24, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from LSTM's Research Centre for Drugs and Diagnostics have found a way of significantly reducing the treatment required for lymphatic filariasis and onchocerciasis from several weeks to seven days. By targeting Wolbachia, a bacterial symbiont that the filarial parasites need to live, the team has discovered a drug synergy that enables effective treatment over a shorter time.

Lymphatic filariasis (LF), which can cause elephantiasis or hydrocele, swelling of the limbs or scrotum and onchocerciasis, also known as river blindness affect millions of people in some of the world's poorest communities. Both are caused by filarial parasites for which the bacterial symbiont Wolbachia is essential for development. Filarial Neglected Tropical Diseases are prioritised for elimination, in line with fulfilment of the 2030 United Nations Sustainable Development Goals. A consensus of expert opinion, including the WHO, and major donors, USAID and UK DFID, considers that successful implementation of a macrofilaricidal (curative) or permanent sterilising drug would greatly accelerate the end game elimination of lymphatic filariasis and onchocerciasis. Traditional treatment for these conditions require repetitive, long-term mass drug administrations, and although targeting the symbiont with doxycycline has proved clinically effective, it is programmatically challenging due to the long treatment time and exclusion of pregnant women and children.

In a new paper, published in the journal PNAS, researchers provide proof-of-concept of a radical improvement to the targeting of Wolbachia via a drug synergy between the anthelmintic drug albendazole and antibiotics. LSTM's Professor Mark Taylor is senior author on the paper. He said: "As part of the A·WOL programme, we have screened all registered drugs for anti-Wolbachia activity, which has allowed us to look at repurposing existing and registered drugs against these debilitating conditions. The combination of an antibiotic and the anti-worm drug albendazole provided the greatest surprise when they acted synergistically to reduce the treatment time from weeks to days, opening up the opportunity to scale-up this approach at the community level."

The team believe that their work is of immediate public health importance because the drugs that have been used, rifampicin and albendazole, are already registered. "These drugs can be tested in infected people as soon as possible," continued Professor Taylor. "

Dr Joe Turner, LSTM first author on the paper, added, "the discovery of drug synergy between a common anthelmintic and different classes of antibiotics is also exciting because even more potent synergism may be evident when we combine with our next generation, 'designer' anti-Wolbachia drugs currently in development as part of the A·WOL programme. Potentially, we may be in a position to reduce curative treatment time frames down to five days or less for filariasis, with better acceptability and reduced costs for patients and local health systems"

###

Media Contact

Clare Bebb
[email protected]
151-705-3135
@LSTMnews

http://www.liv.ac.uk/lstm

http://www.pnas.org/content/early/2017/10/19/1710845114.short?rss=1

Related Journal Article

http://dx.doi.org/10.1073/pnas.1710845114

Share12Tweet7Share2ShareShareShare1

Related Posts

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025
Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

September 23, 2025

Unveiling Magnolia’s Role in Combating Metabolic Syndrome

September 23, 2025

Forecasting Cell Population Evolution Using a New Scaling Law

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Cell Cycle Stages Influence Aging Cells’ Response to Senolytic Drugs

HKU Researchers and Collaborators Capture First “Heartbeat” of Newborn Neutron Star in Distant Cosmic Explosion

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.